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Chapter 1

Introduction

1.1 Problem Overview and Motivation

The focus of this thesis is to study hybrid systems by means of sampling-based plan-

ning techniques. Informally, hybrid systems are those systems that contain both

continuous and discrete elements. The values of the discrete variables represent differ-

ent modes (or states) of the system, and the continuous variables change in different

ways based on the current mode. A simple example of a hybrid system is that of a

manual transmission car. The car has a continuous variable of velocity and a discrete

variable of what gear the car is in. The acceleration of the car is dependent on which

gear the car is in: position and velocity (the continuous variables) change based on

the gear (the discrete variable).

Previous research has shown that hybrid systems are a convenient, succinct de-

scription for many real life applications. For example, hybrid systems have been used

to model air traffic management [34, 56] and airplane safety [22], audio protocols

[9, 40], automated vehicle highway systems [49], automotive suspension control [33],

billiards [1, 47], bouncing balls [55], a cat and mouse problem [47], distributed con-

trollers [30], a gas burner [1, 2, 30], a manual transmission car [40], mutual exclusion

1
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protocols [1, 2, 3, 9, 23, 30, 40], mixing tanks [22], pendulums [50], predator-prey sys-

tems [33, 36], railroad management [3], robotic assembly [13, 14, 20], scheduling [3],

a steam boiler [33], temperature control/thermostat [1, 3, 32, 33, 34, 47], a two-robot

conveyor belt [3], a two-tank water system [1, 2, 34, 48, 55], uninhabited aerial vehi-

cles (primarily helicopters) [24, 25, 26], the weather [50], and the author’s favorite, a

person walking in a multi-story building—a “stair climber” [15, 16, 17, 21].

This list is by no means an exhaustive one. Applications of hybrid systems fall

into the general categories of robotics, chemistry, physics, the automotive and airline

industries, signal processing, safety, and control. Hybrid systems provide a very

general framework for modeling that is concise, convenient, and powerful. They are

an ideal choice for an innumerable number of applications.

The primary problem we study in this thesis is the reachability problem for

hybrid systems. Informally, the reachability problem asks “Starting with an initial

configuration, is it possible for this system to reach a state with a given (different)

configuration?” Returning to our manual transmission car, say we are interested in

designing a controller to shift the gears. We could develop a scheme to shift based

on particular velocities and then propose a reachability question such as “Starting

in gear 1 with velocity 0 mph, is it possible to reach gear 4 with velocity 10 mph?”

Obviously, in this case, we would like to show the answer to this question is “no”, as

most engines do not tolerate high gears with low velocities.

Since hybrid systems are used to model systems found in every day life, thorough

analysis is required to make sure they are safe, complete representations. We can

apply the reachability question to study safety-critical properties of hybrid systems.

When given a hybrid system representation of the dynamics and control of a system,

we phrase the reachability question as “Can this system ever reach an undesirable

state?” In the formal model for hybrid systems used in this thesis, hybrid automata

[2, 1, 47], the answer to the question is limited by the complexity of the system itself.
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Currently, research in modeling hybrid systems has shown limitations, specifically

in the scope of the types of hybrid systems that can be modeled. One tool, HyTech,

uses polyhedral computations to study linear hybrid automaton; however, these tools

can only be applied to systems with nonlinear dynamics if one approximates the

system as a linear one [30, 33]. There are methods for doing this to arbitrary precision,

such as epsilon-approximation of hybrid systems with Lipschitz differential inclusions

[50, 49]. However, at the heart of this problem is finding the balance between a simple

method for describing systems and finding an easy way to examine these systems. By

approximating a system, we in essence break down our convenient description for the

sake of examination. Many of the approximation techniques require adding additional

variables, thus increasing the complexity of the system. Our goal is to apply sampling-

based planning as an alternative—a means to study hybrid systems without redefining

the system in terms of simpler ones. Consequently, sampling-based planning offers a

potential computational advantage over current techniques, since we examine only a

sample of the original system, which has fewer variables than the appoximation.

In the context of this thesis, sampling-based planning refers to methods by

which a system can be studied by only examining a representative sample of that

system. The underlying assumption here is that it is possible to identify the properties

of the system as a whole from a subset of its state space consisting of a number of

samples. If we can find such a subset efficiently, our next assumption is that we can

analyze the subset in a more efficient way than we could the original system. As a toy

example of sampling-based techniques, consider trying to figure out the proportion of

red to blue marbles in a bag that contains 1000 marbles that are either red or blue.

We could divide all 1000 marbles into two groups and count each of the marbles. Or

we could select ten marbles from the bag and check the proportion, assuming that

the ten marbles will be representative of the bag as a whole. Alternatively, select

100 marbles and determine the proportion. This example, while unrelated to hybrid
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systems, illustrates the balance between finding an appropriately sized sample set and

maintaining an accurate study of the system.

We intend for sampling-based planning to apply to hybrid systems by building

upon the notion of a trajectory within a hybrid system. Informally, a trajectory can

be thought of as follows. Given an agent that has a hybrid system description, the

agent will experience changes in its continuous elements while in a particular mode.

At some point, the agent will encounter a condition causing it to switch modes where

it will now experience a different set of changes on its continuous elements. Returning

to our manual transmission car, the velocity of the car will accelerate for a time in

gear 1 until it reaches a critical velocity where the velocity of the car necessitates

switching to another gear. This process will continue (indefinitely) for the car, and

one can keep track of the continuous and discrete changes. Consequently, a sequence

of continuous change, discrete change, continuous change, discrete change, etc. will

form. This sequence is a trajectory.

For many hybrid systems, the number of possible trajectories is infinite as a result

of the infinite number of trajectories through the continuous space. Thus, we need a

way of studying the set of all trajectories in the hybrid system by examining a sample

set of them. Our primary goal is to use sampling-based techniques to accomplish

this task. We take a sample of all the possible trajectories through the system and

use this subset to answer the reachability question. Of consequent importance is how

we choose our sample to maintain the properties of the original system. Hence, in

addition to developing a methodology for applying sampling-based techniques, we

have a secondary goal of improving the techniques themselves so that they are

more applicable to problems that are hybrid in nature.
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1.2 Contributions and Outline of the Thesis

This thesis presents the results of research involving sampling-based planning to study

hybrid systems. The goal of this research is to further study the reachability prob-

lem for hybrid systems. We approach this problem from a sampling-based planning

perspective by applying the rapidly-exploring random tree algorithm (RRT) [41] pre-

viously used in motion-planning problems. In other words, we would like to use

sampling-based techniques to analyze hybrid systems and determine safety-critical

properties.

1.2.1 Thesis Contributions

This thesis demonstrates that hybrid systems can be modeled in a new way—using

sampling-based planning. In particular, it shows how the RRT algorithm can be

applied to a hybrid automaton to provide a sense of “walking” through the system.

Our methodology does not provide a complete decision algorithm for the reachability

problem; however, it does provide a semi-decision algorithm. If the paths grown by

the RRT reach a given state, then we can provide a “yes” result, i.e. “yes, the hybrid

automata can reach a given state.” Because of the approach that sampling-based

planning techniques use, if the growth of the RRT has not reached an undesirable

state, there is no guarantee that it never will. However, since the technique is prob-

abilistic in nature, if repeated iterations of the algorithm continue to produce a “no”,

then the probability of ever reaching an undesirable state decreases.

We demonstrate these results by developing an extension of the Motion Strategy

Library (MSL) developed by Steve LaValle et al. [42]. This tool has been previously

used to provide a generalized framework for development and testing of motion plan-

ning algorithms. We extend it to allow motion planning on hybrid systems, and hence

use it to apply the RRT to hybrid systems. The MSL is a visual tool; consequently our
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extension of the MSL for hybrid systems is a tool used for visualizing the reachability

of hybrid systems.

In addition, we also present new results regarding the RRT algorithm. First,

we use a modified version of the convex hull (similar to that of a minimal-area hull

[4]) to demonstrate general reachability properties of the RRT. We use this hull to

investigate how the RRT converges to the reachable area of a state space. Also, we

study the optimality of the RRT by making a comparison between the path chosen

by the RRT to the optimal (straight-line) path. Finally, we present a synthesis of

the concept of a metric tree [57], specifically that of the vantage-point tree (vp-tree)

[58] and that of the RRT. This combination provides an improvement to the nearest

neighbor query step of the RRT algorithm.

1.2.2 Thesis Outline

This thesis is organized as follows:

Chapter 1 introduces the goals of this thesis and presents its contributions to the

academic community. It also provides a quick outline for the reader.

Chapter 2 summarizes background information regarding current research into hy-

brid systems as well as current research for sampling-based planning. In this

section we also provide many useful definitions used throughout this thesis.

Chapter 3 presents our initial experimental research as well as the development of

a target application based on the MSL.

Chapter 4 describes our experimentation with our extension of the MSL. In addi-

tion to providing different example systems devised by us or based on those in

literature, this section also presents the development (based on need) of new

features for our software package.
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Chapter 5 presents our results regarding RRTs, their potential improvements as

well as justification of their reachability properties

Chapter 6 concludes our thesis. Here we review our results and present open issues

requiring future work.

Note that some of the work in this thesis has also been published in [16, 17].



Chapter 2

Background

Investigating the reachability problem for hybrid systems involves researching two

main areas: hybrid systems and sampling-based planning. We must first have a

clear understanding of hybrid systems before we can devise a strategy to study them.

Afterwards, we need to understand the techniques involved with sampling-based plan-

ning. We plan to combine research in both areas to create a general methodology

for applying sampling-based planning techniques to hybrid systems. The following

chapter summarizes necessary research from both areas and provides the theoretical

groundwork for the solution developed in later chapters.

2.1 Hybrid Systems

Hybrid systems are powerful, flexible tools for describing systems in both real world

industry applications as well as theoretical problems. Hybrid systems, and their

counterpart model, hybrid automata, can be used to model an innumerable number

of different applications. Before we begin discussing them in the context of sampling-

based planning, we present a few formal notions and syntax regarding them.

8
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2.1.1 Syntax

In this thesis, we will use the following definitions:

Definition 2.1.1 (Hybrid System). The term hybrid system refers to a system

that contain both continuous dynamics as well discrete control states such that each

control state is associated with a set of continuous dynamics.

Definition 2.1.2 (Hybrid Automaton). Given a hybrid system (see Definition

2.1.1), we define a hybrid automaton to be a formal model of that system. Our

model is similar to those presented in [2, 1, 47]. Specifically, for each instance of

a hybrid system, our hybrid automaton is H = (X,Q,A,E), with each component

defined as:

• The continuous state space, X, is the set of continuous variables on which

the dynamics of the system occur. A continuous state is a valuation of all

variables in X. The set of all possible valuations is ΣX . Note, for convenience,

we will often use x to refer to the vector of all variables in X and σ to be a

particular valuation of ΣX .

• The discrete state space (sometimes called the set of locations), Q, is a finite

set of discrete states the hybrid automaton can be in. Q ' {1, 2, . . . , N}, N ∈ N.

Remark. At this point note that we can define the concept of a hybrid state

space simply by set ΣX × Q. Hence, a state (or hybrid state) in our hybrid

system is a tuple (σ, q) ∈ ΣX ×Q.

• The set of activity functions (also called behaviors [12]), A = {ai|ai : ΣX −→

ΣX ∀i ∈ Q}. The function ai ∈ A defines how the continuous state changes

when in discrete state i ∈ Q; hence, they are differential equations comprised of

the variables in X, which we will notate as ẋ = ai when in discrete state i.
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• A set of edges, E ⊂ Q×Q×G× J where G is the set of guards (sometimes

invariants) for the edge and J is the set of jump functions (sometimes jump

resets, edge resets, or resets). The set G is defined as G ⊆ 2ΣX where 2S repre-

sents the power set of an arbitrary set S. J is defined as J ⊆ ΣX .

Remark. Hence, given an edge e = (q1, q2, g, j) ∈ E, e represents the edge

from state q1 to q2 that is followed when the continuous state, σ, is such that

σ ∈ g while in state q1 and j captures the assignment that occurs to “reset” the

continuous variables when following the edge e.

The above definition is a variant of the numerous models used in the academic

community for describing hybrid systems. In addition to the sources above the reader

will find [12, 55] useful. We justify using our model of hybrid automata because it

conveniently provides all of the notions we will use later in this thesis.

Within this model of hybrid automata, we choose to classify instances of hybrid

automaton by their different forms of dynamics. Specifically, we are most interested

in three types of hybrid automata:

• Rectangular

• Linear

• Nonlinear

Before we can define rectangular hybrid automata we need to define the notion of

a differential inclusion.

Definition 2.1.3 (Differential Inclusion). A differential inclusion is a set of

constant differential equations that are represented by the upper and lower bounds of

the set. The common syntax used to represent a differential inclusion on the variable

y is ẏ ∈ [L,U ] where L,U ∈ N are the lower and upper bounds, respectively, by which
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y changes. When ẏ is notated this way, it means y may be changing at any rate within

the set [L,U ].

Remark. When y is a vector (notated in bold), we denote a differential inclusion

on all rows of y as ẋ ∈ [L1, U1]× . . .× [Ln, Un] where Li, Ui ∈ N, for all i, and n = |y|,

the size of y. Each [Li, Ui] represents the upper and lower bounds, respectively, by

which the ith element of y may change.

Given this definition we can now build up to the idea of rectangular hybrid au-

tomata. These are hybrid automata that have differential inclusions as their activity

functions.

Definition 2.1.4 (Rectangular Hybrid Automata). A rectangular hybrid au-

tomata (RHA) [35, 51] (also bounded-rate automata [3]) models a hybrid systems

where the activity functions are differential inclusions of the form ẋ ∈ [L1, U1] ×

. . . × [Ln, Un] where Li, Ui ∈ N, for all i, and n = |X| is the number of different

continuous variables in X.

Remark. Hence, A ⊂ {aj|aj = ẋ ∈ [L1, U1] × . . . × [Ln, Un], for all j ∈ Q} where

Li, Ui ∈ N, for all i, and n is the number of different continuous variables in X.

For example, if X = {x1, x2, x3} and ΣX = R3 then n = |X| = 3 and a sample aq

could be:

aq =













[1, 3]

[2, 4]

[−3, 0]













Thus, in state q we could say

x =













x1

x2

x3













is changing by ẋ =













ẋ1

ẋ2

ẋ3













= aq =













[1, 3]

[2, 4]

[−3, 0]












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That is, in state q we say x1 is changing somewhere in the range [1, 3], x2 is changing

in the range [2, 4], and x3 is changing somewhere in the range [−3, 0].

Definition 2.1.5 (Linear Hybrid Automata). We use a linear hybrid au-

tomata (LHA) [1, 29, 39] to model a hybrid system where all activity functions

are differential equations such that the change of each variable in X is a constant ki.

Each activity function is vector function of the form ẋ = k where k is a vector of size

n and each ki ∈ R. Hence A is a subset of the functions that are linear combinations

of the variables in X.

Remark. It is important to note that despite their syntactical differences, all rect-

angular hybrid automata can be described as linear hybrid automata [29]. Given

a rectangular hybrid automata, MRHA, we can construct a linear hybrid automata,

MLHA, such that MLHA has two variables for each in variable in MRHA. Half of these

variables in MLHA will have activity functions that are equal to the set of all Li in

MRHA and the other half with have activity functions that are equal to the set of all

Ui in MRHA. This process is discussed in greater detail in [35].

And finally, we define the notion of nonlinear hybrid automaton. Note that the

following definition lacks in formality as opposed to the above. It is important to

remember that the union of the set of nonlinear hybrid automata and linear hybrid

automata is all hybrid automata. Thus, another way to define nonlinear hybrid

automata is by taking the set of all hybrid automata and removing the set of linear

hybrid automata.

Definition 2.1.6 (Nonlinear Hybrid Automata). A nonlinear hybrid au-

tomata (NLHA) [33, 36, 50] models a hybrid system where all of the activity func-

tions model differential equations that can vary with the values of the variables in X.

Hence, the activity functions are of the form ẋ = f(x) where f(x) is any nonconstant

function.
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Given the above framework for describing and classifying hybrid systems, we are

left with a few unresolved issues. Particularly, what properties of hybrid systems

can (or should) one study given this description? We formalize these notions in the

following sections.

2.1.2 Trajectories

The most important aspect from the above syntax is that a hybrid system is composed

of discrete modes that affect how the continuous variables of the system change. From

this there is a clear picture of the sequential nature of a hybrid system. The continuous

variables, x ∈ X, change based on the activity function, ai, while in discrete state

i. When a guard condition, gi,j, is encountered, the discrete state changes from i

to j and the continuous variables x are reset. This process then repeats, creating a

sequence of continuous change, discrete change, continuous change, discrete change,

etc. Thus we are given an abstract notion of a trajectory through a hybrid system.

We can more formally define this notion now.

Definition 2.1.7 (Trajectory (through a Hybrid Automaton)). A trajectory

through a hybrid automaton, H = (X,Q,A,E), is a sequence (not necessarily finite)

of states (σi, qi), (σi+1, qi+1), (σi+2, qi+2), . . ., (σn, qn), . . . determined by the activity

functions A. That is, (σi+1, qi+1) is determined by using A to change the values of σi

until a guard condition, g ∈ G is encountered. When σi satisfies g, the edge e ∈ E is

followed from discrete state qi to qi+1.

Figure 2.1 is provided to give the reader a visual sense of a trajectory in a hybrid

system. This diagram shows three discrete states, {i, j, k}, and indicates that the

continuous variables are changing based on the activity functions, {ai, aj, ak}, in their

respective states. The top diagram shows a plot where one can see the continuous

changes occurring in each state based on the activity functions. Dotted arrows are
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shown to indicate when an edge reset occurs once a given guard condition is satisfied.

The corresponding diagram for the discrete state transitions is shown below. Each

oval indicates a discrete state and the activity functions that are occurring within it.

Also shown are the edges from states i to j and j to k, which are followed when their

guard conditions gi,j and gj,k are satisfied.

q = i

q = j

q = kx ∈ gi,j

x ∈ gj,k

· · ·

q = i
ẋ = ai

q = j
ẋ = aj

q = k
ẋ = ak

· · ·

x ∈ gi,j x ∈ gj,k

Figure 2.1: A Hybrid System Trajectory, Continuous (top) and Discrete (bottom)

Based on the two diagrams in Figure 2.1, one can see how we can model a hybrid
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system with a sequnce of continuous and discrete changes. This sequence is a tra-

jectory. Given a better understand of hybrid systems and their trajectories, we next

begin to study the reachability problem in terms of a hybrid system. The following

section introduces this concept.

2.1.3 Reachability

One important notion with hybrid automata is that of reachability: can we ever make

it to a particular hybrid state (σ, q) starting from the initial state (σi, qi). We say a

hybrid system is decidable if by analyzing the hybrid automaton of that system, we

can answer the reachability question with a definitive yes or no.

Definition 2.1.8 (Reachability Question). Given a hybrid automaton, H, and

initial state (σi, qi) and a destination state (σd, qd), can we construct a Turing machine

MH such that on input H, (σi, qi), and (σd, qd) MH determines if H will ever reach

state (σd, qd) starting from (σi, qi). If H can reach (σd, qd) from initial state (σi, qi),

MH outputs yes, otherwise MH outputs no. We say a hybrid system is decidable if

such a machine exists for each destination state.

Remark. This definition is equivalent to saying there exists a trajectory (σi, qi),

(σi+1, qi+1), (σi+2, qi+2), . . ., (σd, qd) by following the activity functions and/or edges

of H to progress from (σi, qi) to (σi+1, qi+1).

The reachability question for hybrid automata has been of particular interest in

academia over the last ten years. We study reachability because hybrid systems are

frequently used to describe real world systems. Often, people are interested showing

that the hybrid system is “safe”, that is, cannot ever reach undesirable states. Hence,

if we can show (by proposing the reachability question) that from a start state, it is

impossible to reach any undesirable state, we have verified the system.

Particularly important results regarding decidability of hybrid systems are sum-

marized in [29, 33, 35, 39, 50, 51]. Many different approaches exist to studying
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this problem. For example, one method used by various researchers is to calcu-

late a set propagation of the constraints on the locations. Examples of this include

ε-approximation [50, 49], unions of ellipses [38] or in general of convex polyhedra

[1, 22, 48], and level set techniques [18]. To this end, a significant number of tools

have been developed that automate these techniques, such as HyTech [34, 30, 31, 32],

Kronos [23], Checkmate [52, 53], Uppaal [9, 40], and d/dt [5]. A description of each

of these tools would be beyond the scope of this thesis; however, an excellent overview

of each of them can be found at [54].

The above approaches are algorithmic in nature, and hence can fall short in cer-

tain aspects of the reachability problem. In particularly, many of the tools limit the

description of the input to be of a particular type. For example, HyTech is limited

to only accept automata that can be expressed with activity functions that are linear

expressions. Also, in some cases, they only will provide a semi-decision algorithm

for the reachability problem. In particular, nonlinear systems have been difficult to

study, and current research is beginning to focus on effective means to study them.

Two popular techniques, clock translation and linear phase-portrait approximation

[33, 36] approximate nonlinear hybrid systems to linear hybrid automata. Then these

approximations are analyzed by “traditional” means such as the tools above. Clock

translation replaces the constraints on nonlinear variables with constraints on clock

variable constraints, and linear phase-portrait approximation is a conservative over-

approximation of the nonlinear dynamics into a set of piecewise-constant differential

inclusions. Both are sound for safety properties. Other techniques already mentioned

above for nonlinear systems include ε-approximation and level set methods, partic-

ularly those demonstrated in [56]. However, all of these approximation techniques

suffer from an increase in the number of the states (and thus the complexity of the

system) as the nonlinear system is approximated more closely.

In addition to the algorithmic approaches, there exist several other less devel-
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oped methods. Some of these involve deductive reasoning instead of algorithmically

checking the reachability problem. One particular instance involves using the tool

STeP [10, 45] to perform deductive verification. This tool was shown initially suc-

cessful at some small examples, but the authors note that algorithmic approaches

may be preferable because they are fully automatic. Their theorem prover is only

semi-automated since verification of more complicated decisions requires use of an

interactive Gentzen-style theorem prover. However, the tradeoff for the automatic

approaches is they lose generality of application. While deductive approaches have

been studied somewhat extensively, the work has been mostly theoretical since a

computational approach would lack full automation.

One final approach we found unique was that of a verification tool based on mod-

eling hybrid systems of (2-dimensional) polygonal differential inclusions (or SPDI).

Asarin et al. describes a tool SPeeDI that was constructed to study the reachability

properties of these hybrid systems in [6]. The methods of this tool attempt to do an

exploration of a finite number of trajectories through the hybrid system, as opposed

to directly calculating the reach set.

The technique SPeeDI uses is based very much on the input definition of an SPDI.

An SPDI defines a finite partition of regions of the 2-dimensional plane where in each

region you have a differential inclusion specified by a minimum and maximum angle

(direction) you can move while in that region. The tool uses this input information to

calculate a sequence of trajectories from the initial state based on the directions you

can move. It uses this trajectory to determine when an edge of the next polygon region

will be encountered, and then calculates a new trajectory. This simple technique is

optimized in cases where the trajectories cause a loop in the regions visited. The idea

of following trajectories, instead of reach sets, is like the one presented below, and we

are excited to see a second tool using an approach similar to our own.



18

2.1.4 Conclusions About Hybrid Systems

It is clear from the above description that an extensive amount of research has been

done regarding formalizing and classifying hybrid systems as well as studying the

reachability problem. Decidability has been shown for various types but is limited

on both theoretical and algorithmic fronts. Provable decidability often requires re-

duction of a hybrid system to either a simple model or making strict assumptions

regarding the dynamics of the system. For example, it widely known that rectangu-

lar hybrid automata are decidable [35] as well as linear hybrid automata [39]; however,

decidability for nonlinear hybrid systems is limited to approximation into linear or

rectangular hybrid automata. In terms of the algorithmic fronts, we are met with the

same issues; the tools that we have are limited to performing verification on timed,

rectangular, or linear hybrid automata.

Hence we are left with the unresolved issue of finding a means to decide the

reachability problem for nonlinear hybrid systems. We will return to this idea in

Chapter 3.

2.2 Sampling-based Planning

Sampling-based planning aims to determine specific properties of a space based on

a sampling of the points within that space. A parallel way of understanding this

technique is that we would like to study the whole space by selecting a group of

representative elements of the space (either deterministically or randomly). The un-

derlying assumption here is that we can select a sample of the space that maintains

the properties of the entire space. Following this belief, one reason for applying a

sampling-based approach is to break the “curse of dimensionality” that brute-force

approaches (analyzing every element in the space) often suffer from.

The thrust of this thesis is to demonstrate the applicability of sampling-based
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planning, particular that of the rapidly-exploring random tree (RRT) algorithm, to

hybrid systems. While sampling-based planning can be applied to many types of

queries, often sampling-based planning is used in reference to the context of motion or

path planning. Motion planning involves determining feasible trajectories throughout

a state space. In terms of hybrid systems, we attempt to use sampling-based planning

to determine feasible trajectories through a state space that has a hybrid definition.

We feel that such techniques are highly applicable, and furthermore we are motivated

by one connection of sampled-based planning to hybrid systems in that of Emilio

Frazzoli and his colleague’s “maneuver automaton”. The following section will provide

additional background regarding both the RRT algorithm and motion planning.

2.2.1 RRT Algorithm

The RRT algorithm was first introduced in [41, 43] for use in searching high-dimen-

sional spaces. We feel that the properties of the RRT, particularly that of uniform

distribution of sampling and expansion biased towards unexplored space [41], lend

towards its successful exploration properties. The general idea behind the RRT is

that by sampling the space, one can bias the search of the space towards the largest

unexplored region, and hence achieve a more efficient search. The way it accomplishes

this task is by selecting a random point and taking a small step from the search tree

towards that point. In this manner the tree pulls itself towards the largest search

unexplored region. We present the actual algorithm below:

Algorithm 2.1 (Build_RRT). The following algorithm constructs an RRT, T ,

with K nodes.

1 Build_RRT(xinit) {
2 // i n i t i a l i z e t r e e , T
3 T .init(xinit);
4 for k = 1 to K {
5 xrand ← Random_State ();
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6 // extend T , s e e A lgo r i thm 2.2
7 Extend_RRT(T ,xrand);
8 }
9 return T ;

10 }

The above algorithm constructs an RRT by picking K random nodes and each

iteration extending the tree T based on the randomly picked node. The sub-algorithm

Extend_RRT() (see Algorithm 2.2) is used to extend the RRT at each iteration of

the construction loop. It first determines the closest node in the tree to xrand (passed

in as input x) using Nearest_Neighbor(). Next, it uses New_State() to create a new

node, xnew, with input unew to add to T as a child of xnear. Upon New_State()’s

successful return, it adds a vertex and an edge to T .

Algorithm 2.2 (Extend_RRT). The following algorithm extends a tree, T , to-

wards x by taking a fixed step from the closest node in T to x towards x.

1 Extend_RRT(T , x) {
2 / / f i n d n o d e i n T n e a r e s t t o x
3 xnear ← Nearest_Neighbor(x, T );
4 / / c o n s t r u c t a n ew n o d e , xnew
5 if New_State(xnear, xnew, unew, ∆t) = true {
6 T .add_vertex(xnew);
7 T .add_edge(xnear, xnew, unew);
8 }
9 }

In Extend_RRT(), xnew is determined by taking a fixed step of size ∆t from

xnear towards x. The variable unew is returned containing the input (direction) that

will take you from xnear to xnew. In the holonomic case, one can think of unew as

the direction of movement from xnear to x (as well as xnew). In the nonholonomic

case, unew is selected from a limited set of potential movement directions (based on

the system specifications), and it does not always correspond to a direct path to x.
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Instead, a best input will be returned as unew, and xnew will be constructed by moving

from xnear based on unew.

Figure 2.2 shows a sample RRT growth. The image depicts an RRT growing in

a disc of radius 50, with a ∆t of 2. The images from left to right are at 10, 100,

500, and 1000 nodes, respectively. As is clear in this picture, the RRT grows very

quickly and expands to fill the space. This is demonstrative of how the incremental

construction of the RRT biases it to explore the largest unexplored region, and in [44]

it is shown that the region explored by the RRT converges to a uniform coverage of

the entire space. In this sense, even though the RRT could fail to generate a feasible

path, it will find a path with a high probability. Hence, the RRT is complete in a

probabilistic sense [37].

Figure 2.2: RRT Growth on a Disc of Radius 50

There are also some other facts to be noted regarding this algorithm. The

New_State() function (implicitly) implements both collision detection as well as the

dynamics of the system that the RRT is being grown through. Depending on the

system, this may not be the most efficient method; however, in general this calcula-

tion can be performed quickly [15]. Second, nearest neighbor queries are one of the

bottlenecks to this algorithm. Some solutions to this problem using kd-tree based

variants are proposed in [7]; however, we will also return to this problem near the end

of this thesis in Section 5.4.
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2.2.2 Maneuver Automata

One important instance of sampling-based planning in use is that of motion planning

against a hybrid control architecture. The idea is based on a maneuver automaton

used to describe the motion of a complex vehicle proposed in [25]. The maneuver

automaton attempts to break down a vehicle’s motion into a set of different maneu-

vers. The example used by Frazzoli et al. [25] is that of a helicopter whose dynamics

are both in a high dimensional space and have significant nonlinearities. As a result,

instead of traditional approaches, they choose a set of maneuvers that the helicopter

can perform and describe its motion as this set of primitives. This decomposition of

a nonlinear system into a set of fixed motions is reminiscent of linear-phase portrait

analysis applied in [33, 36] to discretize a nonlinear system.

Given this approach, the resulting set of maneuvers can then be synthesized to

form a hybrid automata, referred to by the authors as a Robust Hybrid Automaton

[24, 26]. In this model, states represent the different maneuvering modes that the

helicopter could be in (e.g., flying forward, hovering, or turning) while edges execute

maneuvers that alter the motion. The key here is that a previously infinite state

space has been reduced to a smaller, quantized one. This is a direct extension of

the generalization of a hybrid system as a finite number of dynamic behaviors and

the rules for switching between them [12]. In particular, this is a powerful extension

because we have now gained a concise way of representing motion through the system.

The authors’ approach to motion planning for their system was to apply single-

query exploration in the form of an RRT. Particularly, they showed the success of this

approach in [19, 27]. From this work, we gain insight of how sampled-based techniques

could in theory be applied to a hybrid state space to do trajectory planning. This

is an important preliminary step to applying sampling-based techniques to hybrid

systems. By maintaining the flavor of a motion planning problem, but applying it to

a hybrid context, we see the potential for the techniques described in this thesis.
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Development

In the earlier chapters we presented an unsolved question of the generalized reachabil-

ity problem for hybrid systems. We also presented research regarding sampling-based

planning that was one possible solution to this problem. This chapter presents our ini-

tial research and resulting choice to develop a tool by extending the Motion Strategy

Library (MSL).

3.1 Initial Research

Motivated by the work of Frazzoli et al. [25, 24, 26], we were encouraged to develop

a generalized framework for running the RRT on the hybrid automata. In particular,

this idea builds on the concept of an hybrid RRT described in [15, 21].

3.1.1 Original Framework

Our first task was to build a framework for RRTs that would allow a transparent level

of access to each particular state. Initially, this framework was developed to allow

an RRT to grow in an arbitrary state space. To do this, we needed to be able to

run the RRT algorithm without knowing any particular information about the state

23
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space itself; hence, we needed to encapsulate two particular aspects for this—that of

the state itself and a means to create new states or “take steps”.

The first is more straightforward: within a State object we need to be able to

store location information (particularly that of an individual valuation of the state

variables, i.e. a v = (σ, q) ∈ ΣX × Q, see Definition 2.1.2). In addition to storing

this information, we needed a transparent interface to provide a metric, a means

of determining the “distance” between two states. This is essential for the Near-

est_Neighbor() query used in the Extend_RRT() algorithm. Discovering different

metrics can in some ways be the most difficult aspect of this process, and in each of

our examples we will spend some time discussing the metric used.

The second aspect we encapsulate separately; we use a Step object with simply

one function to take a step in the given two instances of State. In this function we

intend to implement the system dynamics; essentially we answer the question “How

should one move from this state towards the next?” That is, we want to know how

to construct new states given only the source and destination states.

Pseudocode for both objects is included below. In addition, we provide a revised

version of the RRT algorithm that indicates how these two objects are used in our

framework.

Algorithm 3.1 (Build_RRT (Revised)). The following algorithm is a revised

version of the original RRT construction in Algorithm 2.1 and 2.2.

1 class State {
2 / / t h e p a r t i c u l a r v a l u e o f t h i s s t a t e

3 valuation v;
4 / / d e t e r m i n e t h e d i s t a n c e f r o m t h i s s t a t e t o s2
5 / / t h e d i s t a n c e f r o m this . v t o s2 . v
6 float metric(State s2);
7 };
8
9 class Step {

10 / / c o n s t r u c t a s t a t e , dest , a d i s t a n c e ∆t f r o m src
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11 State takeStep(State src, State dest, Input u, ∆t);
12 };
13
14 Build_RRT(State xinit) {
15 / / i n i t i a l i z e t r e e , T
16 T .init(xinit);
17 for k = 1 to K {
18 xrand ← Random_State ();
19 Extend_RRT(T ,xrand);
20 }
21 return T ;
22 }
23
24 Extend_RRT(T , x) {
25 / / f i n d n o d e i n T n e a r e s t t o x
26 / / c a r e l e s s a l g o r i t h m c h e c k s a l l n o d e s

27 float minDist = MAX_DIST;
28 for each s in T {
29 dist = s.metric(x);
30 if dist < minDist {
31 xnear = s;
32 minDist = dist;
33 }
34 }
35
36 / / c o n s t r u c t a n ew n o d e , xnew
37 xnew = Step.takeStep(xnear, xnew, unew, ∆t)
38 if xnew 6= null {
39 T .add_vertex(xnew);
40 T .add_edge(xnear, xnew, unew);
41 }
42 }

This framework allowed development of a variety of sample experiments. Our

first example modeled a 2d RRT which was used to make the screen shots shown in

Figure 2.2 above. This code, and all remaining code described in this section was

created using C++ and OpenGL and can run on both Windows and Unix platforms.

Code was primarily tested on a Linux machine running Mandrake 8.1 Linux with a

Pentium II-366 processor and 128 MB of ram. The metric used was a simple Euclidean

metric.
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3.1.2 Examples

After developing this simple example, we chose to next develop a system with a

hybrid state. Opting to follow in the research of Curtiss and Branicky [15, 21], we

developed a stair climber example. This example is unique in that it provides a chance

to do motion planning with switching based on continuous state and homogeneous

dynamics. The stair climber models an agent walking through a four story building

at a constant rate (homogeneous dynamics), but who can go up and down the stairs

at will (switching based on continuous state). Thus, this situation is a simple example

of a hybrid RRT problem.

Below we have pictured the hybrid RRT (see Figure 3.1) for the stair climber in

a four floor layout, floors numbering 1–4, left to right and top to bottom. There

are two images here, the left shows the initial configuration of the system and the

right shows the system after 2000 nodes of the RRT has been planned. The hybrid

state in this model is s = (x, y, q) ∈ [0, 100] × [0, 100] × {1, 2, 3, 4}. Here we take a

distance metric of ρ(s1, s2) =
√

(x1 − x2)2 + (y1 − y2)2 + 100|q1 − q2|. ∆t is given as

5. This is reminiscent of the work done by Curtiss and Branicky [15, 21]; however, the

reasoning behind this metric is as yet unexplained. In this metric, we try to balance

the Euclidean distance on the x–y plane with that of the actual floor. In essence, we

make points picked on the same floor to be weighted as closer to each other (i.e. the

factor of 100|q1 − q2| = 0). What we are attempting to do is add a gauge for how

much additional distance would need to be covered to get from floor q1 to q2. This

concept of weighting a metric to weight out the discrete space of the hybrid system

is key in developing useful metrics from hybrid RRT problems. We will come back to

stair climbers and have a more detailed discussion of them in Section 4.1 below.

After modeling the stair climber, we opted to model another similar system within

our framework, that of the peg-in-hole problem. This model is a simplified version

of the one studied in [13, 15, 20]. In this problem, we are given a set of layers that
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Figure 3.1: Stair Climber Growth

have holes in them that are not in line with each other. By moving a peg left and

right, we can slide the layers to align them as we move the peg downward. Here the

hybrid state is s = (x, y, q) ∈ [0, 200]× [0, 300]×{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The discrete

state, q, is representative of how many layers deep we have traveled. Here we take a

distance metric of ρ(s1, s2) =
√

(x1 − x2)2 + (y1 − y2)2. In our example we chose ∆t

as 3 and picked random points as integers pairs from the set [0, 200] × [−600, 300].

The y component of these random values was chosen to force the peg to be biased to

grow downward.

The images shown in Figure 3.2 depict the initial and final configurations of an

example peg-in-hole problem. The peg is green in these images, and the path found

is shown in red. The final configuration is the result of 943 nodes being grown in the

RRT (shown in white). In this particular example, there are ten layers (depicted as

cross sections in blue) that the peg must find a path through. The height of each

layer is fixed at 10 while the horizontal specifications of each layer (the offset from

the left side, the hole width, and the widths of the left and right halves) are picked

at random.
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Figure 3.2: 2d Peg-In-Hole Problem, Initial and Final Configurations

This example is similar to the stair climber in that it can only transition to the

next lowest layer if we have reached a particular (x, y) value that allows the motion of

the peg to continue. However, there are a few subtle differences. The object moving

around is no longer just a point in space, but in this model it is a peg of dimensions

20 × 150. In addition, as the peg move left and right within the maze of layers, the

location of the previously entered layers must shift as well. Hence, the x–y motion of

the peg is now bounded by the width of all of the layers.

3.1.3 Limitations

Given the initial success of the framework developed, we were encouraged to pursue

further work with hybrid RRTs. However, we realized quickly that our framework was

limited by the lack of development time and number of people to create it. Basically, it
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was limited to a tree structure that wrapped the RRT algorithm and a set of interfaces

to create examples. Similarly, designing a user interface was complicated because

inputting each new model required programming new classes as well as writing a

new interface in OpenGL for representation of the problem. We also realized doing

collision detection would be difficult if we wrote our own libraries. (This issue became

particularly apparent when working with the peg-in-hole problem.)

One possible choice of a tool was to follow Frazzoli et al. [19, 27] on modeling

maneuver automaton. In particular, they made use of the LEDA platform [46] to

implement their strategies in C++; however, the LEDA package is no longer freely

available for academic use. Instead of their approach, we opted to develop a tool that

was based on the sampling-based planning techniques themselves, in particular, the

RRT. The next section discusses our development of such a tool.

3.2 Motion Strategy Library (MSL)

The Motion Strategy Library (MSL) provides a backbone for our development of a

visual tool to study the reachability problem for hybrid systems. LaValle et al. de-

veloped the MSL with the purpose of providing a “general-purpose C++ library for

implementing and comparing motion planning algorithms” [42]. In this section, we

will explain our choice for using the MSL as well as a brief overview of the MSL itself.

(To our knowledge, there is no documentation which presents the MSL other than

the informal presentation in [42].) Afterwards, we will explain our extension of the

MSL to deal with hybrid systems.

3.2.1 Rationalization

The selection of the MSL was justified in the previous paragraphs; however we will

summarize our key points here. In the examples above, our framework lacked:
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• Resources to fully develop

• Ease of problem definition input

• User interface

• Generality of application

To this end, we sought a means to apply sampling-based planning algorithms in

a general way to many problem definitions. In addition, we wanted a tool that was

freely available and straightforward to use. And finally, we wanted a tool that could

be applied to hybrid systems that have complex dynamics with a minimum of coding

required.

One other key aspect of the MSL is visualization. Allowing the user of the tool

to view the problems and their subsequent solutions offers a better understanding of

the system as a whole while minimizing time spent learning the system.

3.2.2 Overview of MSL Class Heirarchy

The MSL is composed of three aspects: an interface to input problems of arbitrary di-

mensions and geometries, as well as the dynamics of these problems; a set of planning

algorithms, ranging from probabilistic road maps (PRMs) to numerous RRT variants;

and a graphical means for a user to study how effectively the planning algorithms

solve these problems. A typical session involves running the MSL against a particular

problem, selecting a planner, and using the interface to plan and view paths through

the system. Figure 3.3 shows how the objects are contained and the interactions be-

tween them. This diagram has been highlighted to show the three main subsystems

of the class hierarchies.

Despite differences between our problem definition and the goals of the MSL,

this framework is applicable to our needs. We want to use planning algorithms,
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Figure 3.3: Motion Strategy Library Class Hierarchy, Derived from [42]

particularly RRTs, to "walk" through hybrid systems, a similar task to planning paths

through a motion strategy problem. The MSL provides straightforward extensibility

for all aspects of its design, and serves as the basis for our tool. Our needs require

extending all of the three major subsystems of the MSL listed above.

The interface to a problem definition in the MSL is divided into two main objects—

a Geometry object and a Model object. The Geometry object contains physical rep-

resentations of objects in the state space; in a motion-planning problem these include

the agent and the obstacles among which it travels. Primarily, its role is to do col-

lision detection checks, to keep potential paths for the agent from intersecting the
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space of the obstacles. The Model object encapsulates the dynamics of the system,

including a metric function for determining distance in the space as well as algorithms

to determine future states for the planner given a current state, a time increment and

a control input. Given these two objects, a Problem object provides an encapsula-

tion of both; it provides an interface for the planning algorithm and user interface

subsystems.

The Solver hierarchy is a collection of different planning objects that will be used

to find motion planning solutions to problems. Under the Solver branch there are two

main parent objects, RoadmapPlanner and IncrementalPlanner. RoadmapPlanner

refers to the class of solvers that are PRM variants and IncrementPlanner includes

a dynamic programming variant, FDP, and the RRT hierarchy of planners. The RRT

branch is the largest in this tree of planners, and it includes variants to grow two

trees together as well as ones biased towards the goal. The important thing to note

regarding the planners is that there are a significant number of variants; hence in

the MSL we are provided a large amount of extensibility with how we actually do

sampling-based planning. In addition, we are given a large set of planners to initially

work from in designing our own.

The third main portion of the MSL is the user interface. This part is composed

of three main objects, the Scene, Render, and GUI objects and their respective hi-

erarchies. The Scene object computes the physical locations of objects based on

information provided by the Problem object. The Render object provides a hierarchy

of different ways to draw objects based on different graphical libraries. The MSL

is provided with Render subclasses to work on SGI Iris Performer, Open Inventor,

or OpenGL, to allow flexibility of platform. A Render object receives most of its

information from the Scene and Problem objects, and given this input it does both

the drawing and the animation.

The final part of the user interface is the GUI hierarchy of objects that provide
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a graphical control window for the user. In the hierarchy there is currently only

one GUI subclass, GUIPlanner, which is used for planning against RRT variants. In

this window, users can select different types of planners, modify properties of the

planning algorithm, and execute motion planning. In addition, the GUI also provides

an interface for the user to the commands of the Render object by providing a set of

animation controls that allow the user to start and stop animation, change the speed

of the animation, and the viewpoint. Also included in this is the mouse interface that

allows a user to rotate and translate the viewpoint in the rendering window. One last

feature of the GUI object is to provide the user a way to graph the trees that result

from the planning algorithms.

Given the above description, we will provide a brief summary of each of the above

seven class hierarchies:

Problem is a container class for the Model and Geometry objects. It provides an

interface to the Scene and Solver classes.

Model is an encapsulation of the dynamics of a system, such as a metric for the

Solver object and a way to compute future states.

Geometry is an encapsulation of the physical world. This object is used for collision

detection and to provide geometric representations of the agent and obstacles.

Solver (and its hierarchy) contain the different types of planners used by the system.

Scene is used to compute configurations of objects for the Render object by process-

ing information from the problem.

Render is used to draw and animate objects based on information it receives from

the Problem object via the Scene object. Its hierarchy is based on different

drawing libraries.
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GUI provides a user interface and control window to the user to set parameters of the

Solver class as well as view animations and display images from the Render

object.

3.2.3 Using the MSL

Outside of knowing the underlying structure of the MSL, it is equally important to

get a feel for how the MSL is used to solve planning problems. The input to the

MSL is highly parameterized, and this section will present a brief overview of its use.

Please see [42] for a more complete description.

One should first understand the MSL is used for motion planning, that is, planning

of different agents to find paths through a set of obstacle objects given a set of motion

constraints. This is slightly different than the traditional path planning problem of

finding a path from here to there. A significant portion of the customization that the

user has control with is in these objects. All inputs to the MSL are done with ASCII

files, and the user is allowed to enter in either a list of polygon vertices or a list of

triangles in a simple ASCII format.

Generally, for each motion planning problem, the user will create a directory to

store the problem information. In this directory one will store the agent and obstacle

representations as well as empty files that are named for the Model and Geometry

objects you want to run the problem against. In addition, there are files containing

the initial state, goal state, as well as the lowest and highest possible coordinates.

Finally, there are input files for global values such as view position, the planner’s ∆t,

and the number of nodes to plan.

Given all of this input information, one can then run the MSL, and use the GUI

control window to do planning. From the GUI window the user can select which

planning algorithm they would like to use as well as enter in specific parameters,

including the number of nodes to plan and what ∆t to use. Next, the user presses the
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Plan button and waits for the planning algorithm to finish. Provided the planning

algorithm finishes successfully, the user will then be able to use the animation controls

to adjust the view and watch the planned path. If the planning algorithm fails, the

user is allowed to continue planning additional nodes or switch to a different planning

algorithm.

3.3 Extending the MSL

Implementing an extension to the MSL requires extending all three of the main ar-

eas discussed above—the problem definition, the planning algorithm, and the user

interface. In addition we also needed to extend the input language to provide some

additional parameters for hybrid systems.

3.3.1 Problem Core

In terms of the Problem core, we had to implement both a new Geometry object

and a new Model object. Our Geometry object contained the same information as

a regular Geometry object, but also includes geometries for the state transitions of

the hybrid system. Each transition was modeled as a pair of (P, q) tuples, (Ps, qs)

and (Pf , qf ), where Pi is a polygon in continuous space and qi is its discrete state. In

addition to collision detection, we included algorithms for “state transition detection”.

That is, we used the same geometric algorithms for detecting if the planner intersects

with an obstacle to detect if we intersected with a state transition (or guard region).

However, instead of preventing transition, we use this information to determine when

a jump will be taken through the hybrid system.

The implementation of the Model object for hybrid systems was accomplished sim-

ilarly. We created a subclass of Model for hybrid systems and overrode the functions

for determining the metric to include some metric between two elements of the hybrid
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state. In some cases the metric used the discrete information, but was not required

to do so. In an example we show later, we chose a metric that was dependent on the

continuous as well as the hybrid state. Also, the Model object is used for determining

future states or “taking steps” throughout the continuous state. Since the Model is

independent of the Geometry, the planning algorithm itself determines when state

transitions occur, and reacts accordingly.

In addition to implementing a metric, the Model object also contains the counter-

part information to the state transitions that are detected by the Geometry object.

For this, we include information in the Model to perform different edge resets when

it reaches a guard transition.

One final element of the Model object is that of maintaining the dynamics of the

system and determining new states based on source and destination states. This

information is also encapsulated by our Model object, primarily in two functions, In-

tegrate() and InterpolateState(). These two functions are used by the Solver object

to create new states, and hence were modified accordingly in our Model object. Inte-

grate() is used by the Solver in calculating a new state that is a fixed distance along

a given input vector from some start state. InterpolateState() is used to interpolate

two states and returns the input vector from one to the other based on the topology

of the system.

One should note that the Model object, and in some respects the Geometry, are

very dependent on the problem definition. This is apparent in the hierarchies of

Geometry and Model objects that are contained within the standard MSL. In our

case, we will often end up developing a new Model object for each different problem

we expect to solve (or at the very least class of problem). Part of the problem here is

that we need to implement different metrics as well as problem dependent information.
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3.3.2 Solver

In addition to the Model and Geometry objects, we also must implement a new

type of planning class that plans against hybrid systems. As stated above, the MSL

contains a Solver hierarchy of classes in which a major branch is a collection of RRT

planners. Our hybrid RRT [15, 21] extends directly from the RRT branch, and plans

in a similar manner to all other RRTs used in the MSL. However, one important

difference is that at each iteration of the algorithm, the RRT also does a check to

see if a state transition has occurred. In effect, it queries the Geometry object, and

if the newly planned state for the RRT "collides" with a state transition polygon,

then it adds an additional node to the RRT and follows the jump, performing any

necessary resets. We present a modification of the Extend_RRT() below (for original

Extend_RRT() see Algorithm 2.2):

Algorithm 3.2 (Extend_RRT (Revised)). The following algorithm extends a

tree, T , towards x by taking a fixed step from the closest node in T to x towards x.

1 HybridRRT.Extend_RRT(T , x) {
2 / / f i n d n o d e i n T n e a r e s t t o x
3 xbest ← Select_Node(x, T );
4 / / c o n s t r u c t a n ew n o d e , xnew w i t h i n p u t ubest
5 ubest ← Select_Input(x, xbest, xnew);
6
7 / / i s t h e r e a s t a t e t r a n s i t i o n ?

8 if Problem.StateTransFree(xnew, xnew2) = false {
9 / / n o d e g r o w t h c a u s e s a s t a t e t r a n s i t i o n

10 / / p e r f o r m a r e s e t , c r e a t e xnew2 a n d ubest2
11 Problem.EdgeReset(xnew, xnew2, ubest2);
12 / / now o k t o a d d , i n s e r t

13 T .add_vertex(xnew2);
14 T .add_edge(xbest, xnew2, ubest2);
15 } else {
16 / / n o t r a n s i t i o n , j u s t i n s e r t

17 T .add_vertex(xnew);
18 T .add_edge(xbest, xnew, ubest);
19 }
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20 }

Note a few minor differences in this algorithm. First, instead of calculating a

near neighbor, the MSL uses Select_Node() to encapsulate this, and then uses Se-

lect_Input() to construct a new node and the input one would take from going from

xbest to xnew. This is how the original MSL performed the Extend_RRT() algorithm.

In addition, we added the if statement (line 7) to perform a check to see if a state

transition should occur. Here, the hybrid RRT queries the Problem object that in

turn queries the Geometry object for state transition information. Here, xnew2 is

returned with the resulting node from taking the transition from xnew. If a state

transition has occurred (i.e. the new node is not transition free), then hybrid RRT

queries the Problem object which queries the Model object to determine what should

happen when the state transition jump occurs (i.e. when the system takes the edge

from xnew to xnew2).

3.3.3 User Interface

The final addition to the MSL is developing the user interface to include information

for hybrid systems. Our needs require extending both the Render and GUI object.

The Render object provides an implementation independent interface for rendering

the physical representations of objects in a 3d world. Hence, it works closely with

the Geometry classes. The developers of the MSL include sample Render objects

for a variety of platforms, but for our purposes we chose to work with the OpenGL

library. The GUI object provides a windowed interface that allows the user to easily

specify inputs for the planning algorithms as well as controlling how the Render

object animates the paths that are planned; hence, we needed to modify it to allow

for special controls related to hybrid automata.

Our Render object for hybrid systems involved several changes. Specifically, we
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needed to modify the input language to include discrete state information, and hence

needed to modify how the Render object accessed the input files for the MSL. Cur-

rently, the MSL uses a set of ASCII text files as a convenient means for input; ex-

tending the Render object to read our new input language involved reading an extra

discrete value for state information. In terms of drawing bodies, we chose to draw

them on a one-state-at-a-time basis; hence, displaying each body involves checking

if that body’s state is the current state, and drawing them. Similarly, animation in-

volves storing state information for each frame, and only animating if the state is the

one currently being viewed. A big addition to the Render object included drawing

not only the path planned for the problem, but also drawing the RRT as it is being

constructed as an optional way to view the problem.

Our modified GUI object as compared to the original GUI window is shown in

Figures 3.4 and 3.5. New controls have been added to allow for enabling the new

features listed above in our Render object description. In addition, a control has

been added to cycle through which state you are currently displaying. One important

aspect of the new GUI window is the modified planning controls at the top bar. We

have improved the MSL to allow planning to occur in a threaded fashion so that the

windows provided by the GUI and Render objects do not freeze while waiting for the

Solver objects to finish planning. There are additional features that are shown in

this window that have not been completely explained because more improvements to

the MSL were made incrementally as more complex hybrid systems were attempted

against the extended MSL. Hence, discussion regarding them is saved for later sec-

tions, where they become more significant from this development point of view.

3.3.4 Discussion

For the benefit of the reader, below we summarize a list of new features that have

been discussed. This list does not include features to be described in the next chapter.
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Figure 3.4: Original GUI Window

Figure 3.5: Extended GUI Window

• The Geometry object was extended to support hybrid states via a state transi-

tion free check.

• The Model object was extended to support hybrid states via resetting on the

edges and new metric functions.

• The Solver object was extended to support hybrid RRT planning and include



41

state transitions.

• The Render object was extended to support state based drawing.

• The Render object was extended to accept state-based input.

• The Render object was extended to allow drawing of the RRT during construc-

tion in addition to the path found.

• The GUI object was extended provide state selection.

• The GUI object was extended to allow planning to occur in a separate thread.

One final note is that we did not want to lose the original functionality of the

MSL or hide any of its original features. This is the motivation behind extending the

library by subclasses of each of the above classes instead of just overwriting them.

In each directory for the different hybrid system problems, we included a file named

UseRenderHS to make sure that we use the extended versions of the GUI and Render

objects when we are working with hybrid systems.
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Experimentation

To develop our tool and prove it useful, we generated some different experimental

hybrid systems to study against the tool. The following sections describe those ex-

periments as well as specific improvements to the MSL that became necessary to

accommodate these examples. We discuss the problems in terms of scope of their

complexity—beginning with those problems that have hybrid states, but with simple

dynamics, and then we progressively increase the complexity of the dynamics of the

systems.

4.1 Stair Climbers

To test our extended MSL for hybrid systems, we have done example work using a

four-story building, similar to the one used in previous works devised by Curtiss and

Branicky [15, 21]. This example is important because it bridges the gap between a

motion planning problem and a hybrid systems problem by extending the state space

of a continuous problem to that of a hybrid problem.

Our setup is as follows. Given a four story building (Q ∈ {1, 2, 3, 4}), we attempt

to try to devise a path from the lowest floor to the highest traversing different sets

of staircases. Here the guards are simply regions that represent a staircase up or

42
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down a floor. The stair climber example parallels that of a holonomic planning

problem; the climbing entity can move in any direction in the continuous space in

an unrestrained manner. Hence the activity functions for this system is the set of all

possible trajectories in the continuous state space.

Given the RRT algorithm, we approach this problem in the most direct manner.

We set an initial state somewhere in the bottom floor, q = 1, and the goal state as

a location in q = 4 and grow an RRT. When the RRT reaches any of the switching

regions or “staircases”, we transition and change the value of q accordingly—inserting

a new node into the RRT that has the same continuous configuration but a new

discrete state. Essentially, the RRT is used to fill up the continuous state in each

floor, and is allowed to reach addition floors when it reaches switching regions.

In [15, 21], Curtiss suggests use of a metric function where we introduce a scaling

factor k such that ρ(s1, s2) =
√

(x1 − x2)2 + k ∗ |q1 − q2|, k ∈ R+. The idea here is to

take the Euclidean distance of the continuous space, but at the same time provide a

constant factor modification based on the discrete space. This metric is an intelligent

choice, and it works well provided two conditions exist:

1. k must be picked such that k > δ(xmax, xmin)− ε where δ here is the common

Euclidean distance and ε is “small” compared to δ(xmax, xmin).

2. xrand returned by Random_State() in the Build_RRT() algorithm must be

chosen to be an even distribution of both the continuous states as well as the

discrete ones.

Condition 1 attempts to balance the metric to give a sense of how much further

away a point is if it is located on a different floor. It essentially adds a factor of how

much distance is necessary to cover to move between those continuous states as well

as to find a state transition. The bound on k assumes the worst; that one must travel

the maximum distance in the continuous space to find a state transition. The goal of
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condition 2 is to ensure the RRT continues to grow once it has reached new states.

If all points were picked with an uneven distribution, exploration of the continuous

regions in particular discrete spaces would not occur. However, condition 2 can be

relaxed depending on the specific need of the problem. For example, in the examples

below, by picking points only with q = 3 always, we bias the RRT to grow up, and

hence speed up growth towards that floor. The flaw in this is that once we have

reached a specific floor, we limit the RRT from exploring lower floors.

4.1.1 Two Dimensions

Our first example is a direct translation from the experiment done with our initial

framework above, but was necessary to ensure our extended MSL was capable of

performing the experiments we needed. Specifically, states in our system consist of a

two-dimensional coordinate combined with a discrete floor. Our hybrid state space

is s = (x, y, q) ∈ [0, 50] × [0, 50] × {1, 2, 3, 4}. We use distance metric ρ(s1, s2) =
√

(x1 − x2)2 + (y1 − y2)2 + 50|q1 − q2|. Given these as inputs to our model, we grow

an RRT via the MSL to get a result like the one shown in Figure 4.1.

In this figure, which shows only floor 3 of the state space, the red peg represents

a simple point object (as a tiny square of width 1). The light blue squares are state

transitions or "down stairs" in which q is decremented while the dark blue are "up

stairs" where q is incremented. These squares are of width 6. The MSL draws all

objects in 3d space, and consequently, 2d problems are drawn by translating the

problem onto a 3d space. In this case, all objects have been translated to have a

height of 5 units. The white lines represent the RRT that has been grown through

the system and the red represents the path determined by the RRT. A representation

of each floor of the problem is shown in Figure 4.2. Floors are numbered 1 to 4, left

to right and top to bottom.

As described above (see Section 3.3.2), state transitioning is done using collision
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Figure 4.1: MSL Example of a 2d Stair Climber, Floor 3

detection between the agent and the squares of the transition regions. As the RRT

plans its way through the floors of the example, if it encounters a staircase, it adds

a node in the tree on the corresponding state where the other end of the staircase is.

Staircases here are treated as regions which map two different floors together, acting

like tunnels to different floors. In our examples, we make transitions to adjacent

floors, but the implementation is open enough to allow a guard region to cause a

transition from any floor (state) to any floor (state).

We also felt it was important to make use of the collision detection (for its origi-

nal purpose) by trying out obstacles to plan around. Figure 4.3 demonstrates a more

challenging placement of the switching regions as well as obstacles in the two dimen-

sional stair climber problem. Again, floors are numbers 1 to 4, left to right and top

to bottom. This example has two equidistant staircases on floor 1, but an L-shaped
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Figure 4.2: Four Floors of the 2d Stair Climber

obstacle — shown in magenta — mostly blocks one. However, if the RRT makes it

around the obstacle, floors 2 and 3 will have stair cases located close to each other

allowing the agent to quickly make it to the final floor, q = 4. These staircases have

been walled off with additional obstacles to prevent access except from the staircase

on floor q = 1. If the agent does not find the staircase in the lower right, it must

traverse the entire width of the floor at each point to make it to the final floor.

In this example, choosing the Random_State() function correctly has a significant

impact on the results of the planning. If we only choose random states with q = 4 the
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Figure 4.3: Four Floors of the Second 2d Stair Climber

RRT may quickly find the staircase in the upper left, and if so will never return to

explore floor 1 and find the partially blocked one in the lower right. This is an example

of how both conditions 1 and 2 discussed above (Section 4.1) present tradeoffs for the

weighted Euclidean metric used by Curtiss. We present more discussion regarding

these ideas in the next section.
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4.1.2 Biasing Exploration

The MSL was originally designed with path planning in mind; consequently, the

planners it uses are made to grow until a path to the goal state is found. This

presents a conflict in goals: we would like to have a tool that can check if a particular

trajectory exists, but we would also like to have a tool that achieves full coverage of all

of the possible trajectories. In addition, a third goal is not only finding trajectories,

but providing control over the optimality of the trajectories themselves. This section

explores the balance between these goals. To this end, we have extended our RRT for

hybrid systems in a few different ways as well as devised two more 2d stair climber

problems.

One method we have already mentioned for biasing the growth is by adjusting how

we pick states for our Random_State() function. Here, we adjust the distribution of

the points fed into the RRT planner causing changes in the way it grows. This fine

tuning provides delicate control over the way the planner fills out the space.

An example for biasing Random_State() that is intrinsic to the problem is by

selecting random points such that q = 4 for every point. This biases the RRT to grow

upward continuously, as the metric we use selects points by assuming that closer floors

(smaller ∆q) are better choices to grow from. Thus, depending on the value of k in

our metric, as soon as the RRT finds a path from floor q = 1 to q = 2 it will explore

q = 2 and limit continued exploration of floor q = 1.

Table 4.1 shows the results of running ten trials to compare picking random states

where q is on every floor (q ∈ {1, 2, 3, 4}) or where q is on the top floor (q ∈ {4}). The

first and third column list total nodes planned, while the second and fourth list the

number of nodes in the path to goal (the path from state x = (0, 0, 1) to x = (0, 0, 4)).

As expected, the growth that picks points on only the top floor found a path to the

top using fewer total nodes (compare the averages of 1455.4 nodes to 4679 nodes).

Fewer nodes correlate directly with smaller planning times, but at a cost of both
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q ∈ {1, 2, 3, 4} q ∈ {4}
total nodes nodes in path total nodes nodes in path

3169 133 1772 159
5288 154 1300 131
8061 156 962 141
4062 156 1927 147
3400 135 1503 150
5141 67 1769 157
3039 142 1216 139
2390 135 1418 137
7591 140 1489 139
4649 150 1198 127

Averages
4679 136.8 1455.4 142.7

Standard Deviation
1906.965 26.11428 301.2825 10.47802

Table 4.1: Random States Picked with q ∈ {1, 2, 3, 4} vs. q ∈ {4}

optimality and complete exploration of the system. Note that in row six, we see that

the planner that picked nodes on every floor found a path to goal that was only 67

nodes. This small value is indicative of a trial where the RRT found the shortcut

through the path, around the L-shaped obstacle on the first floor. The planner which

picked nodes only on q ∈ {4} never found this path. This point also contributes to

the high standard deviation for the trials where q ∈ {1, 2, 3, 4}.

Biasing based on the value of the discrete state presents an improvement towards

finding if a single trajectory exists. When we pick q = 4 only, we pick so that we force

to grow the RRT to the top floor, where the goal state is. Focusing on our second

goal of exploring all possible trajectories, we change our bias methodology. Assuming

that interesting trajectories happen at the state transitions, we bias our growth so

that a proportion of the random states we select are points that go towards the guard

regions. Or, more generally, we have a list of subgoals that the planner uses. Based

on a bias percentage, our Random_State() function either picks a node at random

or selects one of the subgoals to grow towards.
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To accomplish this task, we provide an additional input to the planner that is a

list of the subgoals (as points) as well as two additional parameters for each subgoal.

The first is a probability to select that subgoal; the second is a radius to select around.

This way, we can bias our planner to grow towards a particular area (within the radius

of the subgoal) at a particular probability. Our Random_State() function is modified

as follows. First we use the bias percentage to check if the point we return should

be completely random or biased based on the subgoals. If we pick a bias, we then

select one of the subgoals (based on their individual probabilities) to return. Based

on this subgoal, we pick a point at random within the selected radius of the subgoal.

Otherwise, if we are not returning a subgoal, we just return a point at random.

In Figure 4.4 we show two different plots where we have varied the bias percentage.

Similar to the trials we ran above, we ran ten trials and took the averages for the

total number of nodes planned as well as the path length (in nodes). We ran our tests

using bias percentages in the set of {0, 0.05, 0.1, 0.25, 0.5, 0.75}. The plots above show

how total nodes planned varied as well as path length, based on the bias percentages.

For the set of bias percentages, we ran two sets of six trials in total, in the first set

we returned a random state of q ∈ {1, 2, 3, 4} and in the second we returned random

states of q ∈ {4}. Where we did not return a random state, we selected a subgoal at

equal probability, and returned a state that was in a radius of 0 of the subgoal. The

list of subgoals we used were the points at the center of each guard region as well as

the goal state itself.

These two plots show multiple results. First, if we use any bias, even a slight

one, we gain a significant reduction in number of nodes needed to plan as well as a

reduction in the path to goal. Consequently, we can interpret this as a more optimal

path in less computation time. However, increasing the bias more than 25% did not

significantly improve either of these factors. In fact, for the case of q ∈ {1, 2, 3, 4},

increasing the bias to 75% caused total number of nodes to increase. We can also
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Figure 4.4: Plots of Total Nodes and Path Length vs. Bias Percentage

see here again that by selecting random states with q ∈ {4} we gain a reduction in

total number of nodes planner, but we end up growing slightly less optimal paths

to the goal. For the less biased examples, this is a result based on averaging in the

occasional shortcut. For the more biased examples, this is a result of having the

incorrect subgoal pull the path away from the optimal. For example, on floors q = 2
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and q = 3 the staircases in the lower right pull the path downward.

Another important result is that in only one case did any of the biased planners

find the shortcut path (q ∈ {1, 2, 3, 4} for a bias percentage of 0.05 — note the dip

in the path to goal line). The reason here is that the bias caused the RRT to grow

towards the guard regions; however when an obstacle was encountered, the RRT

would walk right into it instead of around. By reducing the number of completely

random points selected, we reduced our chances of making it around the L-shaped

obstacle on the first floor. From this, it is apparent that while the biased planners

performed both faster and with more optimal paths, they explore the region less

completely.

In an effort to improve the exploration of the reachable area, one modification we

made to the planner is for it to have reached every subgoal before it stops planning.

The MSL itself plans until it reaches one goal state, so we modified this stopping

condition to be when all subgoal states are reached. In addition to this, we also

created two new two-dimensional stair climber obstacle layouts. Figures 4.5 and 4.6

show both of these layouts along with sample solutions. Note while both examples

have goal states in the center of floor 4, there are no paths drawn because in these

examples we grew to reach every subgoal, not a particular goal. Therefore, a single

path to a goal state does not coincide with the planner used in these experiments.

The layout in Figure 4.5 has a narrow passageway across the diagonal of the first

floor which opens up in the far corner. Across the other diagonal is an additional pair

of stairs that lead to shorter paths up to the top floor. The initial placement of the

agent is in the bottom right corner, so it must traverse the entire passageway before

reaching a break where it can go to one of the three transitions. The steps in the top

right lead to the shortest path up to the top floor, while the steps in the top left lead

to a path where the agent must traverse the diagonal of each floor. The steps located

in the bottom left are unique in that the agent must go up to floor 3 and then back



53

Figure 4.5: Four Floors of the Third 2d Stair Climber

down to floor 2 to continue up to the top floor. There are a total of 23 subgoals in

this layout; each of the twelve steps has a pair of subgoals as well as the true goal

state in the center of floor 4.

Figure 4.6 presents a layout where the agent is presented with a staircase almost

immediately, and a large wall that it must navigate around to get to the next goal.

The agent is initially located in the top right. The steps on the middle of the right

wall lead to a path where the agent must navigate throughout the width of each floor,

while the steps in the lower right lead to a short path up to the top floor. There are
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Figure 4.6: Four Floors of the Fourth 2d Stair Climber

a total of 13 subgoals in this layout; each of the 6 steps has a pair of subgoals as well

as the true goal state in the center of floor 4.

We ran two sets of trials against these two layouts. The first was run with our orig-

inal subgoal-biased planner (named SubGoal Bias), except we modified the stopping

condition to be when every subgoal had been reached. The second (named TreeDist

Bias) was a modified version of the SubGoal Bias planner so that the probability that

subgoal i was picked, πi, was related to the distance that subgoal was from the RRT

itself. A list of minimum distances was maintained in the planner by calculating the
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distance, di, of each newly added node to each of the subgoals that had not been met.

If di was smaller than the previously stored value for subgoal i, we saved it. We then

calculated the probability to pick a subgoal, k, by taking

πk =
edk

∑n
i=1 e

di

Thus, we weight the probabilities for each subgoal by their distance to the tree as

compared to all of the other subgoals’ distances to the tree. We exponentiate each of

the distances so that the subgoals that are further away are even more likely to get

picked.

For each of the two trials we ran ten iterations of the planner in question and took

the average results for the total number of nodes planned. We varied the bias per-

centages over the set of {0, 0.05, 0.1, 0.25, 0.5} (0.75 was removed because the results

were similar to 0.5 in our first trials). Figures 4.7 and 4.8 show the resultant plots

of the mean values for the total nodes planned in the third and fourth stair climber

examples. Also shown are the standard deviations for each of these trials (notated

by squares indicating the mean ±1
2
of the standard deviation). We do not show plots

of the path lengths for these two examples because when we were growing these two

RRTs we were interested in reaching all of the subgoals, not finding a path to the

goal state.

For the third stair climber example, Figure 4.7 indicates that the original planner

(SubGoal Bias—shown in blue) was more efficient at reaching all of the goals than

the one that took into account the tree distance of each subgoal (TreeDist Bias—

shown in red). For all trials with any sort of bias, it took more nodes planned (and

hence more time) for the second planner to finish. However, one should be careful to

examine the standard deviation for this result. In most cases the standard deviation

for the TreeDist Bias planner was significantly higher than the SubGoal bias. This

indicates that the results were highly distributed, and since this is only the average
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Figure 4.7: Plot of Total Nodes vs. Bias Percentage for Third Stair Climber

of ten trials, the TreeDist Bias averages might be overly skewed by only a few large

values.
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Figure 4.8: Plot of Total Nodes vs. Bias Percentage for Fourth Stair Climber

In the fourth stair climber, shown in Figure 4.8, we can see that the TreeDist
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Bias was slightly better for low bias (≤ 0.1), but as soon as the bias was increased,

it again was outperformed by the SubGoal Bias planner. Once again though, we also

have higher standard deviations, indicative of a highly distributed result. For this

experiment, the TreeDist Bias planner had the three lowest trials, with two at 752

and 859 nodes for a bias of 0.25, and one with 579 nodes at a bias of 0.5.

Consequently we have a highly mixed result for both experiments. The TreeDist

Bias planner has the ability to outperform the SubGoal Bias planner in individual

cases, but on the average the SubGoal Bias is an equal (and most of the time more

efficient) way to determine paths to all subgoals. But note again that for each bias

percentage we only ran ten trials, thus we might be experiencing issues based on a

few poorly distributed samples.

One final interesting note is that we grew our tree until the tree reached each of

the subgoals. However, we made no restrictions on what path it would take to reach

the subgoals. Often, for the more difficult subgoals, the tree would go up to floor 4

and then work back down towards these subgoals. One potential method (that we

did not pursue) to fix this is by specifying sequences of subgoals to accomplish, as

opposed to an unordered list of subgoals.

4.1.3 Three Dimensions

We next chose to extend our work from two dimensions to a three dimension problem

to take advantage of many more of the visual features of the MSL. Thus, we created

a stair climber example where the configuration space was now s = (x, y, z, q) ∈

[0, 50] × [0, 50] × [0, 10] × {1, 2, 3, 4}. Thus, the stair climber could move in the z

direction within each floor as well. In terms of hybrid systems, this example presents

little more significance than the two dimensional one above; however, in terms of

application development having access to the third dimension is more powerful as

well as more visually appealing.
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We took our second two dimensional example (the one including obstacles) and

translated it into the three dimensional state space. From a development standpoint;

this involved writing additional features into the Render object to draw not in three

dimensions, but in six (rotation about the each of the axes as well). In addition, the

input specifications for the agent, Guard regions, and Obstacles were previously 2d

polygons, but now had to be modified to be 3 dimensions. The designers of the MSL

initially chose to use triangles to specify 3d objects, and we also decided to use a

similar specification for our 3d objects.

Screen captures from this example are shown in Figures 4.9 and 4.10. For our

agent, instead of using a point object, we chose to use a 3-dimensional stick figure.

Instead of squares for the state transitions, we chose pyramid-like objects. Both of

these models were designed using PTC Pro/ENGINEER and then output into Medusa

.asc ASCII format. The RRT growth below took 99.9531 seconds on an AMD-K6 300

processor with 128 MB of RAM. 1415 nodes were grown with a step size of 3 and the

path to root (shown in red) had 74 nodes.

The formula ρ(s1, s2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 + 200|q1 − q2| was

used as our distance metric in this example. Again, we reached a similar problem

with choosing random states, finding a balance between forcing the RRT to grow up

while allowing it to continue to explore lower floors. The large factor of k = 200

causes only points with a ∆q = 0 to always be selected first in the nearest neighbor

computation. Thus, we experienced the same results as in the 2d case by picking

random points with q ∈ {1, 2, 3, 4} versus those with q ∈ {4}.

We also ran our biased RRT for the 3d examples. In Figure 4.11 we see two

additional plots that were created the same way as the 2d version. We again ran two

sets of six trials, using the same set of bias percentages ({0, 0.05, 0.1, 0.25, 0.5, 0.75}).

In the first set we returned random states with q ∈ {1, 2, 3, 4} and in the second

q ∈ {4}. Again, each trial was run ten iterations and averaged.
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Figure 4.9: MSL example of a 3d Stair Climber, Floor 1

The results here are comparable to those in the 2d case. However, some features

are important to note. First, since we selected the subgoals to have a z value of 0,

the planner was pulled down toward z = 0 when it grew. Since the transitions here

are tiny pyramids, which are wider at the base, the closer we stayed to the floor, the

more likely we were to hit a guard region. Therefore, having these subgoals caused

state transitions to be found more rapidly. In addition, our 3d agent is a tiny stick

figure, instead of a point object, so the L-shaped obstacle on floor q = 1 was made

with larger gaps than in the 2d case. Consequently, the shortcut path was taken

more often. When we selected random states with q ∈ {1, 2, 3, 4}, the shortcut was

taken four times when the bias was 0, and once when the bias was 0.05. When we

selected random states with q ∈ {4}, the shortcut was taken once when the bias was

0. Therefore, the average path length was lowered for lower biases, causing the initial
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Figure 4.10: MSL Example of a 3d Stair Climber, Floors 1 and 4
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Figure 4.11: Plots of Total Nodes and Path Length vs. Bias Percentage for 3d

dips on the two lines.

4.1.4 Dynamics

The examples above demonstrate systems with constant, holonomic dynamics. That

is, each step the RRT takes is governed by an unconstrained function of a fixed

step size. Specifically, the RRT may move in any direction. However, our future

work will be implementing examples that use more complicated differential inclusions.

Specifically, hybrid dynamics can be included in the Model class for a given example

problem. In the functions that determine the next state given a current state, a time

step, and a control input, we include information regarding the explicit dynamics of

the system. The differential inclusions of a hybrid system are applied given this input

information to determine the future state, instead of just using the constant dynamics

as shown above.

Our first steps involved systems with different speeds on each "floor" in the stair-

climbing problem. To this end, we returned to the 2d example, but adjusted the way

steps were taken. This involved designed a new Model object for the 2d example

where the Select_Input() call within the Extend_RRT() function did a simple check

for what floor the RRT was on. Based on this discrete state information, steps were
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taken of different lengths. This is an example of nonhomogeneous dynamics, where

the activity functions are now a function of q, the discrete space.

To provide additional clarity for the reader, we will recap where we stand based on

both the work done by Curtiss [15, 21] and in the MSL. The stair climber examples all

fall under the category of restricted, nonhomogeneous switching, since state changes

occur at particular regions of each floor that are in different locations on floor-by-floor

basis. With the exception of the example presented in this section, all of the stair

climbers make use of holonomic, homogeneous dynamics as well since the dynamics

allow the agent to move in any direction, at the same speed, and do not change on

a floor-by-floor basis. Altering the Select_Input() method to return a different step

length dependent on q creates nonhomogeneous (but still holonomic) dynamics. In the

next sections, we explore additional systems with nonhomogeneous and nonholonomic

examples.

4.2 Bouncing Balls

Motivated by the need to find more examples with non-constant dynamics we further

pursued different hybrid systems examples. The next one we decided to test against

the MSL was that of a bouncing ball motivated by Simić et al. in [55]. The basic idea

here is to model a ball with a velocity that is affected by a constant acceleration. We

model a bouncing ball as follows in the state diagram in Figure 4.12.

As the state diagram demonstrates, there is one single state for the bouncing ball

with a constant acceleration due to gravity. Of more importance is the jump function.

Here we choose to model the ball as having potentially all possible elasticities (0 ≤

c ≤ 1), so the jump function allows the velocity to be set assuming a fully elastic

collision (c = 1), a fully inelastic collision (c = 0), or any possible value in-between.

It became apparent that some sort of jump reset functionality would be necessary
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ẏ = vy
v̇y = −9.81

y = 5
vy ← −c ∗ vy

Figure 4.12: Bouncing Ball State Diagram

for our extended MSL to be able to work with bouncing balls. The version used for the

stair climber examples above did not have a need for such functionality with particular

edge resets, since following an edge only implied a discrete state configuration change.

Here, we required modifying only the continuous configuration when we followed an

edge, and not the discrete configuration at all. Consequently, in revised versions of

the MSL, line 10 of Algorithm 3.2 (the call to Problem.EdgeReset(xnew, xnew2, unew2)

became an essential aspect of the RRT code. This function call directs the Problem

object to query the Model object to determine the jump reset that will occur when

following the edge from x to xnew and then returns the node to add as xnew2. Thus

xnew2 is inserted as a child of x following the input unew2.

4.2.1 Ball with Staircase

With the bouncing ball example in mind, we devised a more visually appealing bounc-

ing ball example modeling a ball bouncing down a set of stairs. This example was

also motivated by [55], but is slightly different in that our model again only has one

state. We essentially just add a constant horizontal velocity to the state diagram, and

our guard condition is changed to incorporate the different step heights. Figure 4.13
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shows a state diagram of the hybrid automaton we use to model this system.

ẋ = 2
ẏ = vy

v̇y = −9.81

h = x− (x mod 10) ∧ y = 60− h
vy ← −c ∗ vy

Figure 4.13: Bouncing Ball with Staircase State Diagram

This model incorporates a variable h to keep track of the x value of what step

we are located above horizontally. The guard condition causes state transitions when

the value of y is equal to the top of the step. This model assumes a set of six steps,

each of width and height 10. Hence the term 60 − h maintains the top of the step,

since the first step is of height 60 between x values of [0, 10], the second step is height

50 located at x values of [10, 20], and the steps continue downward as x increases.

For this example we model the ball as a sphere of radius 2.5. We created a set of

guard blocks that are 10 units wide and 60 units deep. In addition, we made these

guards 4 units high, to accommodate the step size and approximate ball collisions.

Pictured in Figure 4.14 is the result of planning against this particular example. This

particular path was grown in 4.36719 seconds on a Pentium 4, 2.4 GHz machine with

512 MB of RAM. The tree has 539 nodes and was grown with a ∆t of 0.1. Here since

our hybrid automaton only has one state, we again chose to use the Euclidean metric.

In this particular example, we grow to when the ball has reached a continuous

configuration where its z value is less than zero. The continuous configuration for this
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Figure 4.14: MSL Example of a Ball with Staircase

example is nine dimensional, including the x, y, and z components, rotations on the

three axes, and velocities in the x, y, and z directions. Here we use z as the height

instead of y in our state diagram, but the change of variable has no significant impact

on the results.

We are interested here in discovering not a single trajectory but catering the

example to observe multiple trajectories. The difficulty here is picking random points

so that the point of state transition occurs multiple times; causing splits in the path

when the ball bounces off of the step. In this sense, we need to revise the metric
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function and the random sampling of points so that these points are more likely to be

picked and grown from. The example shown in Figure 4.14 is typical; most samples

grown did not have many branches that were taken more than a step or two deep

(note the limited branching visible on the fourth step).

4.3 Rectangular Hybrid Automata (RHA)

We chose to next test our extension of the MSL against a rectangular hybrid automa-

ton (RHA) similar to those discussed in [3, 35, 51] as well as above in Definition 2.1.4.

To review briefly, rectangular hybrid automata model those systems where the behav-

iors bound the rate of change of each of the continuous variables. Hence, the activity

functions are differential inclusions of the form ẋ ∈ [L,U ], L,U ∈ N for each of the

continuous variables. They are often used to approximate more complicated system

dynamics, and they are equivalent in power to linear hybrid automata [29]. Our tool

is not designed specifically for them; however, by studying RHAs, we show our tool

is capable of modeling many of the examples currently researched. In addition, they

are important systems because they present another nonholonomic example that has

more complexity than the bouncing ball.

To control state transitions, we make use of the collision detection algorithms

similar to way we did with the stair climber example. For each guarding condition,

we construct a polygon region to represent the guard. Our RRT_Extend() algorithm

is modified so that before the new state is added, a check is done to see if the new state

will collide with this region. If so, we perform a reset using the EdgeReset() function,

and add this reset state instead of the original new state calculated previously.

An interesting feature necessary to implement here was the concept of a multi-

state view. As opposed to the stair climber example, in each state, the values that

the continuous variables take on are disjoint regions of the same continuous space.
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Consequently, while viewing each state individually, the need to view multiple states

simultaneously increased dramatically. To this end, our Render object was modified

to be able to draw all states at the same time, on top of each other. We do this by

simply drawing the tree and path as colored line segments instead of white ones as

in the images above. Each segment is colored differently depending on which state

it is in. We also disable drawing the obstacles and state transition regions, as their

locations will be apparent by the color changes in the tree. To enable or disable this

feature, the user toggles the AllState View/OneState View switch located at the

bottom of the center column in Figure 3.5.

4.3.1 Sample RHA

Given this, we propose to study the hybrid automata diagramed in Figure 4.15. We

choose to take this model instead of one directly from the literature because we wanted

to devise an example system that included sufficient branching and jump resets to be

interesting as a case study.

This model has two continuous variables x and y as well as the discrete variable

q ∈ {0, 1, 2, 3, 4}. Hence the hybrid state here is (x, y, q). To grow RRTs in this context

we require redefining the notion of creating a new state or “taking a forward step” in

this system. As we pick random points in the space and find their nearest neighbor, r,

we construct a new state by determining random values for ẋ and ẏ within the bounds

based on the differential equations for state r. The nearest neighbor is selected by

using the Euclidean metric as a distance measure. We extend forward based on these

values as well as the value for ∆t, the size of the step to be taken. Hence, we construct

a new state incrementally by xnew = xr + ẋ ∗∆t and ynew = yr + ẏ ∗∆t.

The results that we achieved using this strategy are positive. Figure 4.16 shows

an example of a run on the above system. The region plotted extends in the lower

left from (x, y) = (−10, 0) to (x, y) = (20, 20) in the upper right.
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ẏ ∈ [−4,−1]

2
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Figure 4.15: A Rectangular Hybrid Automata

For this particular plot, the planner ∆t is 0.3, and we have constructed 1795

nodes in our RRT. Planning took 26.45 seconds on a Pentium II 366 with 128 MB

of RAM. We plan using an initial configuration of (xinit, yinit, qinit) = (1, 1, 0) and a

goal configuration of (xgoal, ygoal, qgoal) = (2.5, 15, 0). We use the goal configuration

to represent a stopping point for the growth algorithm; that is, we are interesting

in determining if the goal state is reachable from the initial state. This is similar in

context to a motion planning problem, the planner will stop if the RRT gets to the

goal state or if the RRT algorithm grows a fixed number of iterations.

Figure 4.16 represents the growth of the RRT throughout the hybrid system. Each

color is indicative of a different state the RRT is in, specifically they translate to 0
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Figure 4.16: MSL Output for the RHA in 4.15

= pink, 1 = red, 2 = green, 3 = yellow, and 4 = blue. From this picture we gain a

sense of both the vector fields in each state as well as the regions that are reachable

within this hybrid system. Another way of representing this can be depicted in the

graph shown in Figure 4.17. Note here that arrow lengths are not proportional to the

actual rates in each state (which may vary anyway), and this arrows are just shown

to represent general direction. Grid size in this figure is in increments of 10.

Is it important to note in both pictures where the jump resets occur. In state 1

(red), when x = 10 a state transition occurs that shifts x = −5, corresponding to a
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Figure 4.17: A Plot of the RHA in 4.15

change into state 3 (yellow). Similarly, when the state is 4 (blue) and y = 5, a state

transition occurs again into state 3 (yellow) and the reset x = −5, y = 15 occurs.

Both of these account for the discontinuities in the graph pictures shown, and given

this the MSL is performing as expected.

To accommodate these discontinuities, we also added the option in the MSL to

show the state transitions where they occur. It may be rather complicated to view all

of the jump resets when showing the entire tree; however, it becomes more clear when

viewing the path planned as shown in Figure 4.18. As you can see in this image, the

path is colored as shown, but transitions are colored using white lines. They allow the

reset conditions to stand out and conveniently show where disjoint parts of the path

connect. Referring back to our extended control panel in Figure 3.5, we can enable or

disable viewing transitions using the ShowTrans On/ShowTrans Off toggle switch

located at the bottom of the second column from the left.
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Figure 4.18: Output for the RHA in 4.15 with Transitions

The results from above demonstrate that using our extended MSL we can gain a

successful visual representation of the vector fields as well as the reachable regions

for an arbitrary rectangular hybrid automaton.

4.3.2 Multi-Action Growth

The traditional approach to deciding rectangular hybrid automata is to double the

dimensionality by introducing a new variable for each in the continuous space such

that one variable changes with the upper bound and the second changes with the lower
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bound. This effectively reduces the hybrid automaton to a multi-rate automaton. For

more information on this approach, the author suggests reviewing [35, 51].

Continuing with this theme, we have modified our RRT Planner and our Model

objects to grow multiple points for each RRT_Extend() call. In this sense, we grow

a unit instead of just one node, where each unit represents the upper and lower

bound reachable from our nearest neighbor. This involved modifying both the Se-

lect_Input() function as well as the Extend_RRT() function. Select_Input() previ-

ously returned one new node and one input to get to that node, instead we have it

return a set of nodes as well as a set of inputs. RRT_Extend() is then modified to

insert each of these nodes into the tree as well shown in Algorithm 4.1.

Algorithm 4.1 (Extend_RRT (Revised for Multi-Action Growth)). The

following algorithm extends a tree, T , towards x by taking a fixed step from the closest

node in T to x towards x.

1 HybridRRT.Extend_RRT(T , x) {
2 / / f i n d n o d e i n T n e a r e s t t o x
3 xbest ← Select_Node(x, T );
4 / / c o n s t r u c t a n ew n o d e s e t , Xnew , i n p u t s e t Ubest
5 Ubest ← Select_Inputs(x, xbest, Xnew);
6
7 / / i n s e r t a l l n ew n o d e s

8 for all xnew ∈ Xnew {
9 / / i s t h e r e a s t a t e t r a n s i t i o n ?

10 if Problem.StateTransFree(xnew, xnew2) = false {
11 / / n o d e g r o w t h c a u s e s a s t a t e t r a n s i t i o n

12 / / p e r f o r m a r e s e t , c r e a t e xnew2 a n d ubest2
13 Problem.EdgeReset(xnew, xnew2, ubest2);
14 / / now o k t o a d d , i n s e r t

15 T .add_vertex(xnew2);
16 T .add_edge(xbest, xnew2, ubest2);
17 } else {
18 / / n o t r a n s i t i o n , j u s t i n s e r t

19 T .add_vertex(xnew);
20 T .add_edge(xbest, xnew, ubest);
21 }
22 }
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23 }

Outside of being close in theory to how to approach rectangular hybrid automata,

this idea is close to the nonholonomic cases studied by LaValle et al. with their MSL.

The Select_Input() function in the nonholonomic case asks the Model for a list of

potential inputs instead of doing an integration along the line from xbest to x (x being

the random state chosen). Select_Input() next iterates through and finds the best

one to use and constructs xnew accordingly. Instead, our algorithm just returns all

possible inputs and then grows from all of them.

We show a resultant tree grown using the concept of multi-action growth in Fig-

ure 4.19. This example had an RRT grown with a ∆t of 0.6 in 819 nodes. The path

was planned in 0.98 seconds on a Pentium II 366 with 128 MB of RAM. One can see

from this figure that for each node the tree will grow out four new nodes representing

the unit for this rectangular system. Given the discrete state, we know that ẋ and ẏ

are bounded such that ẋ ∈ [Lx, Ux] and similarly ẏ ∈ [Ly, Uy]. Hence we can create

four inputs for (ẋ, ẏ) from the set of (Lx, Ly), (Lx, Uy), (Ux, Ly), (Ux, Uy).

One potential problem that we noted with this system is that by using the modified

Euclidean metric for extending our tree, we often caused parts of the tree to be left

without extension. This is apparent in Figure 4.19, as many of the branches grown

in states 0 and 2 are left childless, and only a few are selected to continue growing

from. In some cases, this is a result of the fact that we add four nodes for each one we

select, leaving more leaves. However, by selecting nodes more judiciously, we might

be able improve this as well and create more uniform expansion.

Despite this potential problem, the results have been positive as well, providing

significant improvements over the original, single-action growth versions of the same

system. Often (not always, since the algorithm is still probabilistic), the planner will

complete paths more quickly. Furthermore, we were able to identify two possible

trajectories to the goal state that were not as likely to be found by the traditional
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Figure 4.19: RHA with Multi-Action growth

algorithm. In Figure 4.20 we show two such instances.

The first demonstrates being able to reach the goal state without planning into

discrete states 2 and 4. This example was grown using a ∆t of 0.3 and had 1742

nodes in the RRT. It took 3.57 seconds to plan the path on a Pentium II 366 with

128 MB of RAM. The second example shows the planner finding a trajectory to the

goal state without planning into state 1. In this example the ∆t has been increased

to 1.0 and the RRT had 288 nodes. Planning time was 0.13 seconds on a Pentium II

366 with 128 MB of RAM.
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Figure 4.20: Multi-Action Growth without States 2 and 4 (top) and without State 1
(bottom)



76

Of course, the fact that these paths exist is simply a function of the specifications

of the system itself. However, the system was devised so that all states would be likely

to be traveled to reach the goal state. Hence, the existence of both of these simpler

ones came as a pleasant surprise that demonstrates the success of this technique.

Since many hybrid systems may be approximated as rectangular hybrid systems,

demonstrating that our extended MSL functions on rectangular hybrid systems is an

important step to performing verification. Coupled with the concept of multi-action

growth, which is simply an extension of the techniques used to study rectangular

systems we have increased the scope of our extension considerably.



Chapter 5

Investigating and Improving RRTs

In addition to the study of the applications of RRTs to hybrid systems, we conducted

a significant number of experiments to further the research of the RRT algorithm by

studying its properties and making improvements. This section presents the results

of that research as divided into two major categories of investigating the RRT and

improving the RRT. We investigated the RRT by trying to gain a sense of how

completely it covers the space and how quickly this coverage occurs. Similarly, an

experiment was proposed to study how close to the optimal path the path the RRT

grows is. Finally, we propose improvements to the RRT by increasing the efficiency of

the nearest neighbor calculations through the use of a vantage-point data structure.

5.1 Contour Maps

Our first experiments present a means for visualizing the RRT and the reachable

region exactly. To this end we created a “contour map” of the RRT indicating the

area reachable in the next steps of the RRT. The construction is based on drawing

discs at each node that are of radius equal to a multiple of the step size for the RRT.

We color the circles differently (with a gradient of colors) to indicate the range out

from each node of the tree. The resulting images provide a significant visualization

77
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of both how far out the RRT can reach in a fixed number of steps and how many

steps are required to reach a particular region. Figures 5.1 and 5.2 show two such

examples.

Figure 5.1: A Contour Map of the RRT

Figure 5.1 has the RRT growing out with eight different layers indicating the

region reachable by the RRT in one through eight steps. This image was created by

growing 450 nodes of an RRT on a disc of radius 200. The ∆t for the RRT was 5.

Figure 5.2 shows a similar picture with a progression of the contour map of an RRT

growth. Here the RRT is grown on a disc of radius 50 with a ∆t of 3. Only three
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layers of the contour are drawn, and the images from left to right contain 10, 50, 100,

and 300 nodes, respectively.

Figure 5.2: Contour Map of RRT Growth

In addition to drawing this contour in our own private examples, we opted to

add this feature into our extension of the MSL. In two dimensions, the drawing is

done exactly the same, but the user is allowed to select how many layers are drawn

outward. For three dimensions our visualization is done using spheres drawn as point

clouds with a randomly picked number of slices so that the viewer can differentiate

them. This effect produces a fog around the RRT that achieves the desired purpose of

visualizing where the RRT can reach next. Figure 5.3 depicts this three dimensional

example done in our stair climber example (∆t = 1).

In terms of added controls to the MSL, referring back to Figure 3.5, the reader

will now take note of the two controls in the bottom right of the window. The first

is a toggle switch (the Contour On/Contour Off switch) to turn the contour map

on or off. The second control (the cycling numeric control directly below) allows the

user to cycle through contours of depth 1 up to 5.

Unfortunately, while an interesting visualization, we chose not to pursue calculat-

ing the exact area of the contour map of the RRT. This visualization shows exactly

where the RRT can reach in n steps; however calculating the area of these regions

would require the complex calculation of the intersecting area of all of the circles.

Our focus in this experiment is a simple, accurate visualization.
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Figure 5.3: Stair Climber with 3d Contour

5.2 Convex Hulls

Motivated by the visualization work described above, we were interested in how to

efficiently calculate the area reached by the RRT. To this end we began studying

the convex hull of the points in the tree itself. However, this region incorrectly

approximates the reachable area because of the large gaps of space between some

points in the tree. Particularly in the case of obstacles this can provide a poor

approximation. In Figure 5.4 we show the hull of an RRT that is grown in a disc of

radius 200. 1000 nodes were grown using a ∆t of 5. This hull was calculated using a

variation of the Graham Scan algorithm [28]. It is apparent from this image that the

area enclosed by the convex hull is not the area the RRT has reached.
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Figure 5.4: Convex Hull of an Entire RRT

5.2.1 Improving Our Hull

In attempt to better approximate the area, we needed a hull that was not convex,

since the region explored by the RRT is itself not convex. Similar to the minimal-area

hulls computed in [4] we wanted a tool to visualize the RRTs hull in a non-convex

manner.

The first idea was to group the major divisions of the RRT and compute their

hulls. In [44], it is noted that on a large disc the number of major branches of the

RRT is n+ 1, where n is the dimension of the space. Thus we aimed to group these
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branches by calculating the hulls of the three of them. We do this by inserting the

nodes based on which grandchild of the root they are under. The assumption here is

that the grandchildren of the root have already been divided into their three branches.

Generally, this assumption is correct; however, in a few cases the divisions could occur

further down the tree and cause this to have fewer hulls than the number of major

branches. Figure 5.5 shows the growth of this convex hull. Here we show our hull

grown on a disc of radius 100 with a ∆t of 5. The two images show the hull at 50 and

750 nodes. We can see clearly the three major branches; however, we can also see

two flaws with this method. The hulls still are not an effective approximation: they

contain large areas of empty space not reached by the RRT. Also, the hulls begin to

intersect causing errors in the area calculated.

Figure 5.5: Branched Convex Hull at 50 and 750 Nodes

Finally, the last method we used to calculate the convex hull of an RRT was done

in a manner where we could calculate the regions to arbitrary precision. We group

the points based on their parent and depth in the tree. Basically, we fix a constant

value D as our division of the depth of the nodes. We create multiple convex hulls

such that their parent has a depth, d, of d ≡ 0 (mod D). This creates a set of regions
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that approximate the region that the RRT has reached to a precision ranging from

the exact RRT (D = 1) to the height of the RRT (this would return the convex hull

of all of the points of the RRT).

The results of this calculation show a powerful way of expressing the area explored.

Figures 5.6 and 5.7 show two examples of the growth of the hull. Figure 5.6 has been

grown to 210 nodes on a disc of radius 200 with a ∆t of 10. The depth is divided by

2 and is drawn hollow without the tree itself. The low value for the depth division

causes a very tight approximation of the tree itself.

Figure 5.6: Convex Hull with D = 2
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Figure 5.7 shows a progression of growth on a disc of radius 100 with a ∆t of 5

at 100 and 910 nodes. Here the depth is divided every 10 children deep and it is

drawn filled. We can see how the approximation of the tree is less tight, but how the

reachable area is more accurately portayed.

Figure 5.7: Convex Hull with D = 10 at 100 and 910 Nodes

5.2.2 Hausdorff Distance

The examples above lead to the question of how well this technique approximates the

area, and furthermore at which depth we get a best approximation of the area. The

Hausdorff distance is used to calculate the distance between two sets of points. This

section presents results using the Hausdorff distance to measure the distance from

the vertices in the convex hull to the points in the RRT.

Barnsley defines the Hausdorff distance between two sets of points, A and B as

h(A,B) = d(A,B) ∨ d(B,A) in [8]. Here the ∨ operator indicates select the higher

value of the left and right operands. d(A,B) is defined as d(A,B) = Max{d(x,B)|x ∈

A}, and d(x,B) is defined as d(x,B) = Min{d(x, y)|y ∈ B}. Thus the Hausdorff

distance is built up from the notion of distance between two points (d(x, y)) to distance
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between a point and a set (d(x,B)) to finally the distance between two sets (d(A,B)).

It should be clear that d(A,B) 6= d(B,A); the distance between two sets (in this

definition) is not a symmetric calculation.

We would like to use the Hausdorff distance to gain a feel for the distance between

two sets of points, the set of vertices in the RRT (we will denote them as T ) and the

set of vertices in the convex hull (denoted as C). However, C ⊆ T , since all vertices

in the convex hull are points in the RRT itself. Consequently, d(C, T ) = 0 for all

c ∈ C, and to compute the Hausdorff distance we simply compute d(T,C) since

h(C, T ) = d(C, T ) ∨ d(T,C) = d(C, T ) ∨ 0 = d(T,C).

By using this metric we can get a measure of how close the convex hull that we

have is to the actual tree itself. We ran 16 trials where we grew an RRT on a disc

of radius 200 with step size of 5. After growing 3000 nodes of the tree, we calculated

the convex hull of depths varying from division size of 1 up to the height of the tree

(this maximum ranged from 62 to 73). For each we calculated the Hausdorff distance

between the hull and the tree itself. In Figure 5.8 we show the plot of all 16 trials.
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Figure 5.8: Plot of 16 Trials

This plot indicates that there is a nearly linear relationship between the division
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of the depth we use to approximate the hull and the Hausdorff distance. Its positive

slope indicates that as we increase the division, we get a worse approximation of the

tree itself. Consequently, as we take fewer points from the tree we get a worse sense of

the feel of the area covered. In Figure 5.9 we have a plot of the average of all 16 trials

on the same axis. Here we see more clearly the linear relationship, except around

a division of 45 nodes, the relationship breaks down and increases in slope—again

indicating a worse approximation at higher depth divisions.
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Figure 5.9: Mean of 16 Trials

From this data we gain a feel for what depth we should choose to make a best

approximation of the reachable area. The graph suggests that in the range of [7, 10]

for the depth division we have a Hausdorff distance of [14, 20]. These numbers make

sense in terms of the maximum Hausdorff distance we could achieve of 200—the radius

of the disc we are growing in. We get a distance of 200 when the convex hull only

contains points on the circle of radius 200, since here the distance calculate will be

the distance from the center of the tree (at (0,0)) to the disc. Hence the Hausdorff

distance of [14, 20] indicates that we have a distance of [7%, 10%] of the maximum

distance possible.
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5.2.3 Fractals

The RRT is often characterized as looking like a fractal pattern; however, since its

growth is random it does not possess the property of strict self-similarity that is

necessary for fractal patterns. The convex hull patterns, particular those that are

filled, exhibit this same visual appeal, but yet again are not exactly self-similar and

consequently are not fractals in the traditional sense of having a self-similar unit.

Barnsley discusses the calculating of a fractal dimension in [8] by counting the number

of units needed to cover a pattern. Fractal dimensions give a notion of how densely

a space is covered by a particular pattern, and are a particularly useful concept in

comparing fractals to each other [8].

By using the hulls to represent units covering the RRT, we can gain an approx-

imation of the fractal dimension of this hull. By maintaining a measurement of the

average area of the hulls, we can determine a dataset where we have the number of

hulls necessary to cover the RRT as well as their average size. Essentially, we can

run a trial similar to the one used in the previous section. We grow 3000 nodes of an

RRT on a disc of radius 200 and step size of 5. We next iterate through all possible

divisions of the depth and keep track of the number of hulls needed to cover as well

as their average area. Figure 5.10 shows this process in action at depths of 2, 10, 20,

30, 40, and 67. Note here that the images have been resized 100 pixels by 100 pixels

(i.e. a disc of radius 100) to fit here.

From this we can make a plot of the log(N) and log(A) where N is the number of

hulls needed to cover the area and A is their average area. From this we can take the

negative slope of the fitted linear plot and we get a value of 1.22. In Figure 5.11 we

show a figure with two such trials plotted and the linear fit for them. It is important

to note the jagged part of the line near the center. This is the result of the way the

data was calculated and plotted. The points were plotted in order of decreasing depth

division; however, sometimes when depth division was decreased the number of hulls
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Figure 5.10: Convex Hull of an RRT at Depth Division 2, 10, 20, 30, 40, and 67
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needed to cover the area increased (instead of the expected decreasing). Consequently,

a small jiggle in the line occurred.
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Figure 5.11: Plot of Fractal Dimension

As one can see from the plot, it is close to being linear, but not exactly linear

(it begins to curve off when log(N) equals 4). Part of the problem here is the data

only approximates the values that an actual fractal with a self-similar unit would

have. Even with the expected error from approximating a real world data set, we

can conclude that the hull of the RRT (and hence the RRT itself) falls somewhere

between a plane and a line since the fractal dimension is in the range [1, 2].

5.2.4 Hull Area versus Reachable Area

One question that still remains is how well the RRT is actually covering the reachable

area of the region. Given that we can compute the convex hull area, we can gain an

experimental result as to how quickly (as in how many nodes) the RRT covers the

total reachable area. This data definitely corresponds to what our division of depth

is as well as the step size and the size of the reachable region. In addition, it is also

a function of the area itself—obstacles in the space of the RRT affect how it fills the
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space. It is stated in [44] that the RRT is probabilistically complete (i.e. it will fill up

the space eventually), but gaining a way to measure how well it fills the space is an

important, unanswered question. Previously, it has been studied what happens when

you change the step size, and above we examined how the depth division affects our

measurements. In this section we study four examples where we vary the state space

to control how the reachable area gets explored.

Our first example is simply the same disc of radius 200 we have been using. For

this example as well as the remaining three we use a step size of 5 and a depth division

of 7. The depth division was chosen as rationalized above in Section 5.2.2. We ran

ten trials with these parameters, and a plot of the percentage of hull area to reachable

area versus the number of nodes is shown in Figure 5.12. We took data points every

100 iterations of the RRT_Extend() algorithm. The initial state in the tree was the

point at (0,0), and we grew the tree until the percentage of the hull area was 100% of

the reachable area. In this plot we see all ten trials were very similar in their results.
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Figure 5.12: Plot of Hull Area vs. Reachable Area, No Obstacles

Our next example involved random shapes placed throughout the disc. These

obstacles are not particularly inhibiting to the growth of the RRT, with the exception
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of the corner on the left side of the bottom obstacle that the RRT was forced to

navigate around. This particular obstacle is placed so that the left side creates a

narrow gap with the circle of radius 200, and the right side intersects with the circle,

blocking growth of the RRT completely. In Figure 5.13 we show both the initial

obstacle layout as well as the plot (the white + represents the root of the RRT) of

the resulting ten trials. Note here that the total reachable area is a disc of radius 200

minus the area of the obstacles.
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Figure 5.13: Hull vs. Area Initial Configuration and Plot, First Obstacle Set

Again the ten trials are relatively similar in growth. However, there is some slight

separation in the trials between the ranges of 3000 to 5000 nodes. This is an indication

of the variations in time required to get around the one obstacle.

Our third example attempts to control the plot of this to a finer degree. We

created another trial where we moved the initial state to (100,0) and created an

obstacle forcing the tree to grow through a narrow passageway at (0,0). Again we

have a figure of the obstacle layout as well as the resulting plot, shown in Figure 5.14.

Note here that the white + indicates how the initial point in the tree has been moved

to (100,0).
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Figure 5.14: Hull vs. Area Initial Configuration and Plot, Second Obstacle Set

The results here are more interesting. For each line in the plot one can see a clear

break where the RRT slowed down to try to make its way through the obstacle. After

it found a path it again rapidly explored the new open region. However, while it did

always find this path, it did not find this path at the same point in growth—indicative

of the probabilistic completeness of the RRT.

Finally, we increased the “difficulty” of our third example by adding two C-shaped

obstacles around the initial state of (100,0) and the point (-100,0). These obstacles

and the plot of the ten trials are shown in Figure 5.15 (the initial state is shown as a

white +). Again we have stalls where the RRT had to find its way around a narrow

passage. The first stall is to get out of the C-shaped obstacle on the left and the

second is to make it through the narrow passage in the center.

These four experiments demonstrate the power of our hull and are useful in ex-

ploring the area reached by the RRT. One caveat of our hull is that the area of the

summed convex hulls includes a small amount of error. When hulls overlap (which

they do eventually as the RRT grows) we sum the overlapping areas twice. In ad-

dition, in the examples that had obstacles, when the hull had points that cause the
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Figure 5.15: Hull vs. Area Initial Configuration and Plot, Third Obstacle Set

lines of the hull to span over the corner of an obstacle, this additional error is added

in. However, for our purposes this slight error in calculation is acceptable.

5.3 Optimal Solutions

In addition to studying the area reachable by the RRT we were also interested in

gaining a measure for the path planned from the RRT as compared to the optimal

path. Here we present the results of a series experiments that were conducted to gain

a sense of how close to optimal the paths grown by the RRT are. The results of these

experiments present a distribution for the ratio of the RRT path versus the optimal

(straight-line) path.

All experiments were conducted by growing 1000 separate RRTs rooted at the

center of a disc (or in three dimensions, a sphere of radius 200). The step size used

in these experiments was varied, and each RRT was grown until a node was created

in the tree that was within one step of the goal. Afterwards, by following the parent

links to the root of the tree, we calculated the RRT path by summing the distance

from goal to root. Then the number of nodes, the optimal distance to goal (i.e.
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the straight line path), and the RRT distance to goal was saved. No obstacles were

present for any of these experiments.

5.3.1 Fixed Goal State

The first set of these experiments involved having the goal state fixed at the point

(50,50) for each of the 1000 iterations. In Figure 5.16 we show a histogram of 20 bins

of the resulting distribution for a step size of 5. On the x-axis we have a ratio of RRT

path to optimal path and the y-axis is the number of points in that particular bin.

Note here in this graph that we have clipped off the x values greater than 5, of which

there were very few.

1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

Ratio of RRT to Optimal Path Length

C
ou

nt

Figure 5.16: Histogram of Fixed Data Set for Step Size 5, 20 Bins

This distribution above is indicative of a lognormal distribution. The mean is

µ = 1.6678 and the standard deviation is σ = 0.4646. The distribution we have is

however shifted right by 1. This is the result of the smallest ratio of RRT path to

optimal path being 1 (in the case where the RRT path was exactly the straight line

path). By transforming our histogram by taking log(x − 1) we gain a bell-shaped

normal curve as shown in Figure 5.17. This histogram is also drawn with 20 bins.
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Figure 5.17: Transformation of Fixed Data Set, 20 Bins

We also ran the same experiment by varying the step size in the range of [6, 50].

In Figure 5.18 we show a summary histogram of all of the step sizes for both the

original lognormal distribution (left) and the transformed distribution (right).
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Figure 5.18: Summary of Fixed Goal State for Step Sizes [5, 50]

Not surprisingly, the distribution for every step size was indeed a lognormal dis-

tribution, and similarly, after taking the logarithm of the data set, we gain a set of

normal curves.
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5.3.2 Random Goal State

Our second experiment involved choosing a random goal state at each of the 1000

iterations. Here all of the specifics are the same as in the last experiment except for

the goal state, which was chosen as integer located anywhere within a disc of radius

200 centered at (0, 0). Again we plotted a histogram of the ratio of RRT path to the

optimal path for a step size of 5 shown in Figure 5.19 with 20 bins.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

Ratio of RRT to Optimal Path Length

C
ou

nt

Figure 5.19: Histogram of Random Data Set for Step Size 5, 20 Bins

Here we again obtain a lognormal distribution with mean µ = 1.4990 and standard

deviation σ = 0.3048. We can take the same transformation (log(x − 1)) to get the

resulting normal curve in Figure 5.20.

The results here are the same as the fixed data set, we have a resultant normal

curve. However, we have a large negative outlier point on the left hand side of the plot.

Since we are picking random points anywhere within a disc of radius 200, occasionally

we will pick a point that is within a disc of radius 5. Consequently, we will reach our

random goal point within 1 step. In this case, the random point selected was (−2, 1)

which is a distance 2.23607 < 5 from the root of the tree. However, since we take

log(x− 1) of the data, we cannot calculate the log of 1− 1 = 0. So we approximate
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Figure 5.20: Transformation of Random Data Set, 20 Bins

the value by replacing all instances of 1 with 1.0001, and log(0.0001) = −9.2013,

explaining the outlier.

For completeness, we show the resulting histograms of the data (left) and its

transformation (right) in Figure 5.21. One can see here that as step size increased,

we encountered more and more instances where we had to convert 1 to 1.0001. As

the step size increased, a larger portion of the disc of radius 200 was reachable in 1

step.
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Figure 5.21: Summary of Fixed Goal State for Step Sizes [5, 50]
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5.3.3 Three Dimensions

We were also interested in varying the dimensionality of the problem as well as the

step size. So we chose to repeat our experiments for both fixed and random data

points in a three dimensional space. For a fixed point we chose (50, 50, 50) and we

grew our RRT within a sphere of radius 200. Again we grew 1000 iterations of the

RRT, and we varied the step size from 10 to 50 in increments of 5. The results of this

series of experiments again presented us with a lognormal distribution.

More interesting are the results we obtained when we plotted the mean values of

the ratio of RRT to optimal path lengths. In Figure 5.22 we show a plot of means for

all of the 3d trials as well as the original 2d trials with a fixed goal state. Figure 5.23

shows a similar plot of means except with a random goal state.

These plots clearly show that in three dimensions the mean values of the ratios are

much higher than the two dimensional cases. It also shows that as step size changes,

the mean value of the ratio does not change significantly for fixed or randomly selected

goal points. However, in the fixed case, there are two distinct dips in the mean ratios,

in the 2d case around 35 and in the 3d case around 40. This is the result of the step

size approaching 50% of the distance to the fixed goal point. As step size increases

past this threshold, it becomes increasingly more likely that the RRT path will be

closer to the optimal path because we are more likely to find paths in one or two steps

to the goal.

One final comparison can be made from the fixed goal states to the random goal

states. Both of the fixed trials had consistently higher mean ratios than the random

goal state trials. This result can be attributed to the fact that in the random goal

state trials, we occasionally chose points where the goal was in one step of the root of

the tree, causing more optimal paths on average (since we had more ratios of value

1).

We show the standard deviations of all of these trials in both plots by drawing
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Figure 5.22: Mean Ratios for 2d and 3d Experiments, Fixed Goal
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Figure 5.23: Mean Ratios for 2d and 3d Experiments, Random Goal

squares which stem from each value indicating the mean±1
2
of the standard deviation.

In all cases the standard deviations increased as a function of step size, the expected

result as larger step sizes cause the extremes in the ratio of RRT path to optimal
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path to be more likely. Since we are taking fewer, larger steps, we are more likely to

either hit an optimal path or completely miss one.

5.4 Bounded RRTs

One of the downfalls of the RRT algorithm is the heavy reliance on nearest neighbor

calculations. At each iteration of the RRT_Extend() algorithm, one must calculate

the nearest neighbor to the random point picked. Consquently, as the RRT gets larger,

this becomes increasingly less efficient as more and more nodes must be searched for

the nearest neighbor. Some solutions have been proposed in [7] using different data

structures such as the kd-tree to store to the nodes of the RRT as it grows.

In this section we would like to suggest and investigate a second structure based on

the metric tree, a concept originally introduced in [57]. This idea was later generalized

to the concept of the vantage-point tree or vp-tree [58]. Broadly, metric trees work

by storing a distance value with each node of the tree at construction. By saving

this distance information we are able to trade distance calculations for comparisons,

and using these comparisons to determine nearest neighbors. The assumption here

is that metric functions are often expensive to calculate, and simple comparisons can

be done more rapidly.

The basic algorithm for the vp-tree appears in [11, 58], but we will reproduce it

here briefly. Given a set S = {s1, s2, . . . , sn} of data points, we select an arbitrary

vantage-point svp ∈ S. Next determine the median distance by calculating the value

M = median of {ρ(si, svp)| ∀si ∈ S} where ρ is the distance metric being used. Divide

S into two subsets, Sl and Sr where Sl = {si|ρ(si, svp) ≤M} and Sr = {si|ρ(si, svp) >

M}. Now recursively divide Sl and Sr. Thus, we can search our vantage-point

structure with a query point q by only needing to calculate the distance from q to

each svp that we chose, and from their only needing to search either in Sl or Sr.
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The vp-tree has already been studied as a powerful structure, particularly in

high dimensional spaces, for improving nearest neighbor queries. However, it is not

immediately applicable to the RRT algorithm. One major problem is that the vp-tree

structure is not iterative. All points are known at construction time, and in fact there

is a large, expensive construction step (inherent in all metric trees), which cannot be

performed since the point set of the RRT is not known yet. However, we can take

the same idea of exchanging distance calculations for comparisons and apply that to

our RRT.

5.4.1 Maximum-Minimum Bounds

Our first idea was to use the origin of the RRT as the vantage point. Our construction

of a vp-tree is modified as follows. We store the distance to the root as we add each

node into the tree. We also store a value for the tree representing the maximum

distance of any node to the root. Instead of maintaining a median M we use this

maximum distance to subdivide our points. Also, instead of maintaining a recursive

search structure, we keep the original RRT hierarchy.

Our nearest neighbor algorithm is modified from the basic idea of iterating through

each point and calculating the distance to query point. Instead we calculate a median

M based on the maximum distance to select only particular points to calculate the

distance to. We use a constant k ∈ [0, 1] specifiable on input to determine a nearest

neighbor as shown in Algorithm 5.1. In each node the data field distToRoot stores

the distance to the root of that particular node. In the tree, the data field maxDist

stores the current maximum distance of any node to the root, and the field k stores

the constant by which we determine M .

Algorithm 5.1 (Nearest Neighbor). The following algorithm determines the near-

est neighbor in a tree T to a point x.
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1 Nearest_Neighbor(T , x) {
2 / / t h e d i s t a n c e f r o m x t o t h e r o o t .

3 distx ← x.metric(T .root);
4 / / s t o r e s t h e m i n imum d i s t a n c e o f a n y n o d e t o x
5 / / i n i t i a l l y s e t t o l a r g e s t p o s s i b l e v a l u e

6 distmin ← T .maxDist;
7 / / t h e c a l c u l a t e d m e d i a n

8 M = T .maxDist * T .k;
9

10 / / i s x o u t s i d e o r i n s i d e o f t h e b o u n d s ?

11 if distx ≤ M {
12 / / s e a r c h t h e n o d e s i n s i d e o f r a d i u s M
13 for each n ∈ T {
14 if n.distToRoot ≤ M {
15 disttmp = x.metric(n);
16 if tmp < distmin {
17 distmin ← disttmp;
18 nnearest ← n;
19 }
20 }
21 }
22 } else {
23 / / s e a r c h t h e n o d e s o u t s i d e o f r a d i u s M
24 for each n ∈ T {
25 if n.distToRoot > M {
26 disttmp = x.metric(n);
27 if tmp < distmin {
28 distmin ← disttmp;
29 nnearest ← n;
30 }
31 }
32 }
33 }
34
35 return nnearest;
36 }

The idea here is that we have a moving partition with which we use to prevent

unnecessary calculations of the metric. However, we do have to make a pass through

the entire tree because we are limited in construction of our data structure (our

tree does not possess the recursive subdivision of a metric tree). If we had tried
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to subdivide the points into a hierarchy earlier, we would have to rebuild our tree

structure as the bounds move outwards.

In Figure 5.24 we show the progression of growth of a bounded RRT. We have

illustrated the maximum bound by a blue circle and the minimum by a red circle. In

this example we have set k = 0.75. Here the RRT is grown on a disc of radius 100

with a ∆t of 5. The image on the left has 50 nodes and the image on the right has

500. One already sees a potential problem with this idea in that the RRT is biased

to grow in only the direction that maintains the furthest distance. This result occurs

because we only query nodes in the outer ring for their nearest neighbor when the

random state selected is outside of the blue ring. However, despite this limitation the

RRT does eventually cover the entire region, by branching around the blue circle.

Figure 5.24: Bounded RRT with k = 0.75

5.4.2 Multi-way Bounded RRT

Significant improvements to the vp-tree are a current topic of research. Particularly,

ideas exist such as the mvp-tree tree (multiple vantage points) and the multi-way

vp-tree [11]. The former uses a set of vantage points to divide the region up into sets
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of regions that are intersection of spheres, and the second uses a set of k medians for

one vantage point. In this section we explore an application of multi-way vp-trees to

our bounded RRT construction.

The idea follows immediately from our previous discussion. Instead of storing

a maximum bound and using a constant k to modify the set of points we query,

we use k as an integer to divide our searchable region as a set of concentric circles.

Figure 5.25 illustrates the growth of an RRT in this manner as well as showing the

set of concentric circles. Here we have chosen k = 5. Again the RRT was grown on

disc of radius 100 with a ∆t of 5. However, the images shown are at 50 nodes and

1000 nodes—demonstrating how extra exploration is needed if the bounds become

too restrictive.

Figure 5.25: Bounded RRT with k = 5

One can see in this example that the RRT does eventually fill the space, but suffers

from a similar flaw as in the maximum-minimum bounded RRT. The path is biased

to grow only in one direction, and then curls around the boundaries to fill up the

space. This issue becomes more apparent if we increase k. In Figure 5.26 we show

the results of an RRT growing where k = 15. Here the RRT is grown on a disc of
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radius 100 with ∆t = 5. The image on the left has 50 nodes and the image on the

right has 2000 nodes, indicative of 15 being too restrictive in this example.

Figure 5.26: Bounded RRT with k = 15

It becomes more than apparent by these visuals that by bounding the RRT we can

control and limit the regions the RRT grows in. However, we do save nearest neighbor

calculations significantly. In the case where k = 5, on average we only queried 20%

(= 1/5) of the points calculated. This trend continues with other values of k; hence,

when k = 15, we only queried 6.67% = 1/15 of the nodes (on average). Thus, we

make an exchange of uniform growth for speed of querying—the original idea behind

the vp-tree. The assumption in both cases however is the same: the points that we

query are most likely to be the points we want to grow from.

An issue noted in [11] is that at higher dimensions the volume of the spherical

shells becomes increasingly thin. Thus, at higher k values in high dimensions, the

number of points queried is reduced so far that often nearest neighbor calculations

will be increasingly inaccurate. Thus we have a mixed result; the ideal solution will

have a balance of reducing the number of nodes queried but preventing the thinning

of the shells to allow for uniform growth and exploration.
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Conclusions

6.1 Results Summary

In this thesis we presented the development of a visual tool using RRTs to study the

reachability of hybrid systems. In addition we further explored the RRT and provided

different visual, experimental, and statistical results related to them.

In Chapter 3 we presented an overview of our extension to the Motion Strategy

Library (MSL) [42]. First we explained the need for such a tool as compared to

our initial, coded examples. We followed this with an explanation of the hierarchy

behind the MSL as well as a brief discussion of using the MSL. We then described

our extension to the MSL, detailing the major objects that we modified, and what

features we added. We also described how the MSL was adapted to allow a hybrid

system description input as well as how we extended the user interface of the MSL

to contain hybrid state information

Chapter 4 followed up with a presentation of the experiments that we performed

with the extended MSL. We explored the stair climber problem first discussed by

Curtiss in [21]. Focusing first on the two dimensional case, we examined biasing the

RRT to grow towards switching regions as a set of subgoals. We explained how we took

106
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advantage of the features of the MSL and extended this problem to three continuous

dimensions. Hybrid system examples with nonconstant dynamics (e.g., bouncing

balls) were also studied. Finally, in a big step toward making our tool comparable

to other hybrid automata tools, we created a rectangular hybrid automata example

to study in our extension. Related to rectangular hybrid automata, we explored an

improvement to the RRT by using the concept of multi-action growth.

Our last major chapter, Chapter 5, presents new results regarding the RRT

algorithm itself. We discuss visual representations of the reachable region of the RRT

through use of a contour map visualization. Next we attempted to study a convex

hull of an RRT and proposed a scheme for estimating the area reached by the RRT to

arbitrary precision. We also made a statistical analysis of the paths grown by RRTs

as compared to the optimal solutions. Finally, we discussed an improvement to the

RRT by modifying the vantage-point tree data structure and synthesizing it with the

RRT’s iterative construction.

6.2 Open Issues and Future Work

RRTs continue to provide positive results, and there are many areas that remain to

be studied in relation to them. In addition, hybrid systems are also a current topic

of much research, leaving many areas to further explore:

Nonlinear Hybrid Automata: We have taken our experimental examples to the

level that other researchers in hybrid systems have as well. It is well known that

many hybrid automata can be approximated as rectangular hybrid automata,

which are decidable [35]. However, we believe our approach is applicable to

nonlinear descriptions as well since RRTs have been used for nonholonomic

problems with great success. In developing our extension to the MSL we left

the implementation sufficiently open that by changing the Model object, one
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could easily incorporate nonlinear dynamics. Our bouncing ball example is a

simple nonlinear one, but more nonlinear problems should be pursued in the

MSL.

Maneuver Automata: Suggested in [25] and later developed into the idea of a

Robust Hybrid Automaton in [24, 26] these descriptions provide a powerful

link between sampling-based planning and hybrid systems. Their examples,

which model the motion of complex vehicles using RRTs and other sampling-

techniques use similar ideas as the experiments we have performed. Multi-action

growth is also similar to the idea of maneuver automata since it pursues a set

of input directions. Consequently, we feel pursuing one of their examples and

applying it to our extended MSL is highly applicable.

MSL Development: We believe that there is a significant amount of work left with

the MSL from a development end as well. Potential features to be added include:

Multi-State Visualizations: Our current solutions to visualizing hybrid sys-

tems include drawing only one state or drawing all states on top of each

other in different colors. A different visualization that could be more flexi-

ble would allow the user to select which states they wanted to view (either

on top of each other or in separate windows simultaneously).

Problem Description Interface: Currently all problems are specified as text

files but code must still be written to model the dynamics (a Model object)

and the physical representations (a Geometry object) of the system. There

could be other more flexible solutions to enter in this portion of the problem

definition.

Metric Functions: Unexplored issues remain regarding different metrics. We are

left with unanswered questions studying what different metrics we could use to

describe the state space. We discussed the work of Curtiss [15, 21] in Section 4.1
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and explained how his particular metric works well in terms of a stair climber.

Additional work is necessary to determine what other metric functions will also

work well with our hybrid RRTs.

Random State Selection: We experimented some in Section 4.1.2 with adjusting

how we picked random states and using the random state selection to bias our

planners to grow RRTs towards switching regions. There is still more work to do

in creating more intelligent planners that are biased to grow towards switching

regions in optimal ways. Ideally we would like a planner that provides a proper

balance between exploring both the continuous and discrete state spaces. In

addition, for examples such as the rectangular hybrid automata, it would be

better to sample from only the set of points in the space that are in the “forward”

direction (defined by the dynamics), as opposed to the set of all points.

Multiple RRTs: In [21] the idea of growing many RRTs for multi-agent planning is

discussed. Similarly, would it be feasible/useful to grow a tree in multiple states

to approach RRTs for hybrid systems? We discussed multi-action growth for

rectangular hybrid automata in Section 4.3.2, which is growing a single RRT

in multiple directions simultaneously. What about growing multiple trees, one

from each switching region? If so, how would the intersections of n-trees be

calculated and how would one know when to stop or balance the growth of

the forest of trees? What are the ramifications of growing multiple trees in a

nonholonomic problem space?

Despite the large list of remaining areas to research, we are pleased with the

success of applying sampling-based techniques to study hybrid systems. We have

created the foundation for a tool by which we can continue studying hybrid systems

using RRT variants. Also, we have further researched the RRT itself, creating a better

understanding of sampling-based techniques as a whole.
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